Лабораторная работа: Парный регрессионный анализ

3. rxy в линейной регрессионной модели >rxy в степенной регрессионной модели,

4. т.е 0,964148>0,96056 на 0,003588

5. D в линейной регрессионной модели < D в степенной регрессионной модели, т.е 92.95825<92, 95830 на 0.00005

6. F в линейной регрессионной модели > F в степенной регрессионной модели, т.е 310,27>343,233.на 32.963

7. Sост в линейной регрессионной модели > Sост в степенной регрессионной модели, т.е 6758.98>6758,991на 0,011

8. Sb 1 в линейной регрессионной модели < Sb 1 в степенной регрессионной модели, т.е 316.87<316,97 на 0,10

9. Sb 0 в линейной регрессионной модели > Sb 0 в степенной регрессионной модели, т.е 89,52>89,51 на 0,01.

Так же за счет того, что в линейной регрессионной модели отличается от в степенной регрессионной модели доверительные границы коэффициентов регрессий разные, так же различаются и .

1. в линейной регрессионной модели < в степенной регрессионной модели, т.е 33,61>40,63 на 7.02

2. в линейной регрессионной модели < в степенной регрессионной модели, т.е. -18,53<1,18 на 19.71

3. Ir в линейной регрессионной модели < Ir в степенной регрессионной модели, т.е 0,960563<0,96351 на 0, 002947

4. Э в линейной регрессионной модели > Э в степенной регрессионной модели, т.е -1,06>0,000161736 на 1.2058

5. А в линейной регрессионной модели < А в степенной регрессионной модели, т.е 2,83<0,341604 на 2.488396

Из выше сказанного, можно сказать, что практически все значения, полученные в степенной регрессионной модели больше, чем результаты, полученные в ходе вычисления линейной регрессионной модели. Прежде всего, это происходит за счет того, что в линейной регрессионной модели больше в степенной регрессионной модели.

Если сравнивать значения, полученные в линейной регрессионной модели с помощью Excel с «Пакетом анализа», то значения получаются те же самые, т.е. наблюдается полное совпадение результатов.

При построении графиков исходных данных с теоретической прямой можно сказать, что есть небольшое различие при построении теоретической прямой в линейной регрессионной модели и в степенной регрессионной модели. В степенной регрессионной модели теоретическая прямая немного отклоняется от прямой в линейной регрессионной модели. Так же можно наглядно увидеть, что на промежутке от 900 до 1050 (ед.) наблюдается наибольшая концентрация «наших значений», т.е. на этом промежутке происходит наибольшее пересечение объема выпускаемой продукции с постоянными расходами.

К-во Просмотров: 441
Бесплатно скачать Лабораторная работа: Парный регрессионный анализ