Лабораторная работа: Парный регрессионный анализ
Следовательно, можно рассчитать доверительные границы коэффициентов регрессии:
Значит можно сделать вывод, что коэффициенты b1 и b0 значимы, так как они лежат в этих интервалах, то есть модель адекватна.
5. Рассчитаем t — статистики Стьюдента:
Получается, что = 33,61, = -18,53. Значит коэффициент tb1 не значим, т.к. tb1 меньше tтабл и tb0 значим, так как больше tтабл, следовательно, один коэффициент tb0 оказывает воздействие на результативный признак.
Рассчитаем индекс корреляции:
В результате получаем, что Ir = 0,96351 = rxy . Следовательно, индекс корреляции и коэффициент корреляции рассчитаны, верно.
7. Рассчитаем значение коэффициента эластичности:
В результате Э = 0,000161736. Коэффициента эластичности показывает, что на 0,000161736 % изменится результат постоянных расходов (у) при изменении на 1% объема выпускаемой продукции (х.).
8. Оценить качество модели можно с помощью коэффициента аппроксимации:
В результате получаем, что А = 0,341604171, следовательно, коэффициент аппроксимации не принадлежит интервалу [0,7;1]. Значит можно сделать вывод о том, что модель не качественная.
Рассчитаем точность прогноза:
, где
хр = 13,5687
=46432,58
Значит точность прогноза удельных постоянных расходов при прогнозном значении объема выпускаемой продукции, составляющей 142,7% от среднего уровня составляет 168444,9249.
Рассчитаем ошибку прогноза:
= 6947,015806
Значит, ошибка прогноза составляет 6907,6. Вычислим теперь на основе выше рассчитанного доверительный интервал:
3.Сравнительный анализ расчетов, произведенных с помощью формул Excel и с использованием «Пакета анализа»
Если сравнивать между собой результаты, полученные при расчетах линейной и степенной регрессионной модели, то можно выделить следующее:
1. Значение b1 в линейной регрессионной модели < b1 в степенной регрессионной модели, т.е. -5870,33<0,90 на 5871,23