Лабораторная работа: Парный регрессионный анализ

b1 = 0, 90

b0 = 167325, 81

Значит степенное уравнение регрессии примет вид:

= 167325,81*0,90х

1. Рассчитаем коэффициент корреляции:

Следовательно, rxy = 0,96. Значит можно сделать вывод, что между Х и у, то есть между постоянными расходами и объемом выпускаемой продукции связь не тесная.

2. Рассчитаем коэффициент детерминации:

D = r2 xy * 100

D =92, 95830 (%)

Следовательно, величина постоянных расходов только на 92, 27 % объясняется величиной объема выпускаемой продукции.

3. Рассчитаем дисперсионное отношение Фишера:

F расч = 343,233.

Fтабл = 4, 20. (нахождение см. в линейной регрессионной модели)

Так как Fрасчетное > Fтабличное значит уравнение статистически значимо.

4. Рассчитаем стандартные ошибки коэффициентов регрессии:

, где

При вычислении Sост было получено, что

Sост = 6758,991.

Следовательно,

Sb 1 = 316,97

Sb 0 = 3563,99.

6. Рассчитаем доверительные границы коэффициентов регрессии:

, где

табл находится по таблице t-критерия Стьюдента при уровне значимости 0,05 и числе степенной свободы равной 26.

Значит tтабл = 2,0555.

= 7325,59

К-во Просмотров: 442
Бесплатно скачать Лабораторная работа: Парный регрессионный анализ