Лабораторная работа: Парный регрессионный анализ
b1 = 0, 90
b0 = 167325, 81
Значит степенное уравнение регрессии примет вид:
= 167325,81*0,90х
1. Рассчитаем коэффициент корреляции:
Следовательно, rxy = 0,96. Значит можно сделать вывод, что между Х и у, то есть между постоянными расходами и объемом выпускаемой продукции связь не тесная.
2. Рассчитаем коэффициент детерминации:
D = r2 xy * 100
D =92, 95830 (%)
Следовательно, величина постоянных расходов только на 92, 27 % объясняется величиной объема выпускаемой продукции.
3. Рассчитаем дисперсионное отношение Фишера:
F расч = 343,233.
Fтабл = 4, 20. (нахождение см. в линейной регрессионной модели)
Так как Fрасчетное > Fтабличное значит уравнение статистически значимо.
4. Рассчитаем стандартные ошибки коэффициентов регрессии:
, где
При вычислении Sост было получено, что
Sост = 6758,991.
Следовательно,
Sb 1 = 316,97
Sb 0 = 3563,99.
6. Рассчитаем доверительные границы коэффициентов регрессии:
, где
табл находится по таблице t-критерия Стьюдента при уровне значимости 0,05 и числе степенной свободы равной 26.
Значит tтабл = 2,0555.
= 7325,59