Лабораторная работа: Применение численных методов для решения уравнений с частными производными

S2=[n TABL(7,1) TABL(7,3);TABL(7,1) TABL(7,3) TABL(7,6);TABL(7,3) TABL(7,6) TABL(7,7)] матрица коэффициентов

T2=[TABL(7,2);TABL(7,4);TABL(7,5)] вектор правых частей

coef2=S2\T2 решение нормальной системы МНК

A2=coef2(3);B2=coef2(2);C2=coef2(1); коэффициенты многочлена 2-ой степени

S2 =

6.0000 7.5000 13.7500

7.5000 13.7500 28.1250

13.7500 28.1250 61.1875

T2 =

3.0110

5.4402

10.8966

coef2 =

-0.0466

0.5917

-0.0834

Для построения графиков функций y1=A1*x+B1 и y2=A2*x^2+B2*x+C2 с найденными коэффициентами зададим вспомогательный вектор абсциссы xi, а затем вычислим элементы векторов g1=A1*xi+B1 и g2=A2*xi^2+B2*xi+C2:

h=0.05;

xi=min(X):h:max(X);

g1=A1*xi+B1;

g2=A2*xi.^2+B2*xi+C2;

plot(X,Y,'*k',xi,g1,xi,g2);grid

coef1=polyfit(X,Y,1) коэффициенты многочлена первой степени

coef2=polyfit(X,Y,2) коэффициенты многочлена второй степени

coef1 = 0.3832 0.0229

coef2 = -0.0834 0.5917 -0.0466

Для построения графиков зададим вспомогательный вектор абсциссы xi, а затем c помощью функции polyval вычислим элементы векторов g1 и g2:

xi=min(X):0.1:max(X);

g1=polyval(coef1,xi);

К-во Просмотров: 499
Бесплатно скачать Лабораторная работа: Применение численных методов для решения уравнений с частными производными