Лабораторная работа: Применение численных методов для решения уравнений с частными производными

eps1 = 0.1008

eps2 = abs(z2-z3)

eps2 = 0.0751

Для оценки погрешности многочлена P3 необходимо предварительно вычислить

значение z4=P4(x*), а затем - eps3.

P4=polyfit(X,Y,4);z4=polyval(P4,xzv);

eps3=abs(z4-z3)

eps3 = 0.1450

«Построение сплайна»

X=[0.0000 0.5000 1.0000 1.5000 2.0000 2.5000];

Y=[0.0378 0.0653 0.3789 1.0353 0.5172 0.9765];

cs = spline(X,[0 Y 0]);

xx = linspace(0,2.5);

plot(X,Y,'*m',xx,ppval(cs,xx),'-k');

h=0.5

esstestvennii spline

A=[4 2 0 0 0 0

1 4 1 0 0 0

0 1 4 1 0 0

0 0 1 4 1 0

0 0 0 1 4 1

0 0 0 0 2 4]

B=[6*(Y(2)-Y(1))/h 0 0 0 0 6*(Y(length(Y))-Y(length(Y)-1))/h]

for i = 2:(length(Y)-1)

B(i)=(3/h)*(Y(i+1)-Y(i-1))

end

S=inv(A)*B'

otsutstvie uzla

A1=[1 0 -1 0 0 0

К-во Просмотров: 507
Бесплатно скачать Лабораторная работа: Применение численных методов для решения уравнений с частными производными