Лабораторная работа: Применение численных методов для решения уравнений с частными производными

Для решения задачи локального интерполирования алгебраическими многочленами в системе MATLAB предназначены функции polyfit (POLYnomial FITting - аппроксимация многочленом) и polyval (POLYnomial VALue - значение многочлена).

Функция polyfit (X,Y,n) находит коэффициенты многочлена степени n , построенного по данным вектора Х, который аппроксимирует данные вектора Y в смысле наименьшего квадрата отклонения. Если число элементов векторов X и Y равно n+1, то функция polyfit (X,Y,n) решает задачу интерполирования многочленом степени n.

Функция polyval (P,z) вычисляет значения полинома, коэффициенты которого являются элементами вектора P, от аргумента z . Если z – вектор или матрица, то полином вычисляется во всех точках z.

Воспользуемся указанными функциями системы MATLAB для решения задачи локального интерполирования алгебраическими многочленами функции, заданной таблицей своих значений

X

0.0

1.0

2.0

3.0

4.0

Y

1.0

1.8

2.2

1.4

1.0

и вычисления ее приближенного значения в точке x* = 2.2 .

Задача 1 (задача локального интерполирования многочленами)

Построить интерполяционные многочлены 1-ой, 2-ой и 3-ей степени.

Вычислить их значения при x=x*.

Записать многочлены в канонической форме и построить их графики.

Решение задачи средствами системы MATLAB:

X=[0.0000 0.5000 1.0000 1.5000 2.0000 2.5000];

Y=[0.0378 0.0653 0.3789 1.0353 0.5172 0.9765];

xzv=1.61;

P1=polyfit(X(4:5),Y(4:5),1) Коэффициенты многочлена P1

P2=polyfit(X(3:5),Y(3:5),2) Коэффициенты многочлена P2

P3=polyfit(X(3:6),Y(3:6),3) Коэффициенты многочлена P3

Полученные таким образом коэффициенты интерполяционных многочленов и значения этих многочленов при x=x* :

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 497
Бесплатно скачать Лабораторная работа: Применение численных методов для решения уравнений с частными производными