Лабораторная работа: Применение численных методов для решения уравнений с частными производными

P2 = -2.3490 7.1853 -4.4574

P3 = 2.8692 -15.2604 25.8351 -13.0650

z1 = 0.9213

z2 = 1.0221

z3 = 0.9470

многочлены P1, P2, P3

P1 = -1.0362 *X+2.5896

P2 = -2.3490 *X2 +7.1853 *X+-4.4574

P3 = 2.8692 *X3 -15.2604 *X2 + 25.8351 + -13.0650

Для построения графиков интерполяционных многочленов следует создать векторы xi1, xi2, xi3, моделирующие интервалы (X(3):X(4)), (X(2):X(4)),(X(2):X(5)), соответственно, и вычислить значения многочленов P1, P2, P3 для элементов векторов xi1, xi2, xi3, соответственно:

xi1=X(4):0.05:X(5);

xi2=X(3):0.05:X(5);

xi3=X(3):0.05:X(6);

y1=polyval(P1,xi1);

y2=polyval(P2,xi2);

y3=polyval(P3,xi3);

plot(X,Y,'*k',xi1,y1,xi2,y2,xi3,y3);grid

Интерполирование нелинейной функцией Y=A*exp(-B*X)

y_l=log(Y)

Pu=polyfit(X(4:5),y_l(4:5),1)

z_l=(exp(Pu(2))*exp(Pu(1)*xzv))

Y= 8.3040*exp(-1.3880*X)

Функция plot с указанными аргументами строит табличные значения функции черными звездочками('*k'), а также графики многочленов P1 (по векторам xi1 и y1), P2 (по векторам xi2 и y2) и P3 (по векторам xi3 и y3), и функцией Y=A*exp(-B*X), соответственно синей, красной и зеленой кривыми.

plot(X,Y,'*k',xi1,y1,xi2,y2,xi3,y3,xi1,exp(Pu(2))*exp(Pu(1)*xi1));grid

Оценка погрешности интерполирования

При оценке погрешности решения задачи интерполирования в точке x* за погрешность epsk интерполяционного многочлена степени k принимается модуль разности значений этого многочлена и многочлена степени k+1 в точке x*.

С помощью уже полученных значений мы можем оценить погрешности интерполяционных многочленов P1 и P2 в точке x* , используя функцию abs системы MATLAB для вычисления модуля:

К-во Просмотров: 501
Бесплатно скачать Лабораторная работа: Применение численных методов для решения уравнений с частными производными