Реферат: Анализ сигналов и их прохождения через электрические цепи
Импульсная характеристика h(t) это реакция цепи на дельта-импульс d(t). Удобнее всего искать ее в операторной форме.
Изображение d(t) в операторной форме имеет вид, приведённый в формуле (3.3.8).
|
Импульсную характеристику цепи найдём через обратное преобразование Лапласа, результат которого приведён в формуле (3.3.9).
(3.3.9)
Графическое изображение импульсной характеристики апериодического звена приведено в приложении Б на рисунке Б.3
Переходная характеристика g(t) представляет собой реакцию цепи на единичную ступеньку s(t). Изображение s(t) в операторной форме имеет вид:
|
Сигнал на выходе в операторной форме, когда на входе единичная ступенька s(t) имеет вид:
|
В итоге, переходная характеристика приведена в формуле (3.3.12).
|
Графическое изображение переходной характеристики апериодического звена приведено в приложении Б на рисунке Б.4
3.4 Колебательное звено.
Схема колебательного звена приведена на рисунке 3.4.1
Рисунок 3.4.1 – Схема электрическая принципиальная колебательного контура
Параметры цепи
L=1.5мкГн=1.5×10-6 Гн, C=20000пФ=2×10-8 Ф,
Q=50, R1 =103 R, fр =f0
Найдём R и R1 . Для этого преобразуем параллельное соединение C и R1 в последовательное соединение Сэкв и Rэкв .
Допустим R1 >>Rc , где R1 – сопротивление резистора R1, Rc – реактивное сопротивление конденсатора, тогда Сэкв »С.
????????????? ????? ????????? ?? ??????? 3.4.2
Рисунок 3.4.2 – Эквивалентная схема колебательного звена
Резонансная частота последовательного колебательного контура определяется формулой:
. (3.4.1)
. (3.4.2)
Характеристическое сопротивление контура – сопротивление каждого из реактивных элементов при резонансе:
. (3.4.3)
. (3.4.4)
Переходя к эквивалентной схеме определяют Rэкв по формуле:
. (3.4.5)
Rпос =R+Rэк . (3.4.6)
Подставив все значения в формулу (3.4.4):
Ом. (3.4.7)
Подставляем (3.4.5) в (3.4.4) и учитывая, что R1 =103 ×R, получаем:
, (3.4.8)
. (3.4.9)
R=0.087Ом. Следовательно, R1 =870 Ом.
870 Ом >> 8.66 Ом (3.4.10)
Комплексный частотный коэффициент передачи цепи определяется по аналогии с апериодическим звеном по формуле (3.3.3).
(3.4.11)
коэффициент передачи колебательного звена.
(5.8)
Для АЧХ имеем:
. (5.9)
Для ФЧХ имеем:
. (5.10)
Амплитудно-частотная и фазо-частотная характеристики колебательного звена показаны на рисунках в приложении В на рисунках В.1 и В.2
Операторный коэффициент передачи получаем путём замены iw на р по аналогии с апериодическим звеном.