Реферат: Билеты по аналитической геометрии
Определение: связкой плоскостей называется совокупность плоскостей, роходящих ч/з одну точку. Эта точка называется центром связки.
Условия для плоскостей:
1. n1 параллелен n2 - параллельности.
2. A1A2+B1B2+C1C2=0 – перпендикулярности.
3. пересечения трех плоскостей в одной точке:
Пусть заданы три плоскости: система: A1x+B1y+C1z+D1=0; A2x+B2y+C2z+D2=0; A3x+B3y+C3z+D3=0
Данная система должна иметь единственное решение, а поэтому ее определитель составленный из коэфф. при каждом не равен 0.
ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ.
Пусть задана система векторов а1, а2, а3,…,ал (1) одной размерности.
Определение: система векторов (1) называется линейно-независимой, если равенство 1а1+2а2+…+лал=0 (2) выполняется лишь в том случае, когда все числа 1, 2,…, л=0 и R
Определение: система векторов (1) называется линейно-зависимой, если равенство (2) выполнимо хотя бы при одном i0 (i=1,…,k)
Свойства
-
Если система векторов содержит нулевой вектор, то она линейно зависима
-
Если система векторов содержит линейно-зависимую подсистему векторов, то она будет линейно-зависимой.
-
Если система векторов линейно-независима, то и любая ее подсистема будет линейно независимой.
-
Если система векторов содержит хотя бы один вектор, являющийся линейной комбинацией других векторов, то эта система векторов будет линейно зависимой.
Определение: два вектора называются коллинеарными, если они лежат на параллельных прямых.
Определение: три вектора называются компланарными, если они лежат в параллельных плоскостях.
Теорема: Если заданы два вектора a и b, причем а0 и эти векторы коллинеарны, то найдется такое действительное число , что b=a.
Теорема: Для того что бы два вектора были линейно-зависимы необходимо и достаточно, что бы они были коллениарны.
Доказательство: достаточность. Т.к. векторы коллинеарны, то b=a. Будем считать, что а,b0 (если нет, то система линейно-зависима по 1 свойству). 1b-a=0. Т.к. коэфф. При b0, то система линейно зависима по определению. Необходимость. Пусть а и b линейно-зависимы. а+b=0, 0. а= -b/*b. а и b коллинеарны по определению умножения вектора на число.
Теорема: для того, чтобы три вектора были линекно-зависимы необходимо и достаточно, чтобы они были компланарны. Необходимость.
Дано: a, b, c – линейно-зависимы. Доказать: a, b, c – компланарны. Доказательство: т.к. векторы линейно-зависимы, то а+b+c=0, 0. с= - /*а - /*b. с-диагональ параллелограмма, поэтому a, b, c лежат в одной плоскости.
БАЗИС СИСТЕМЫ ВЕКТОРОВ. РАЗЛИЧНЫЕ СИСТЕМЫ КООРДИНАТ.
1. Определение: пусть задана некоторая система векторов. Базисом этой системы называется мах. совокупность линейно-независимых векторов системы.
В множестве векторов на прямой базис состоит из одного ненулевого вектора.
В качестве базиса множества векторов на плоскости можно взять произвольную пару.
В множестве векторов в трехмерном пространстве базис состоит из трех некомпланарных векторов.