Реферат: Билеты по аналитической геометрии
xcos+ysin-P=0
т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.
Cos2=(A*t)2
Sin2=(B*t)2
-p=C*t
cos2+sin2=t2(A2+B2), t2=1/A2+B2, t=sqrt(1/ A2+B2). Sign t= - sign C
Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.
Аtх+Bty+Ct=0, t-нормирующий множитель.
2. Обозначим d – расстояние от точки до прямой, а ч/з б – отклонение точки от прямой. б=d, если нач.коорд. и точка по разные стороны; = - d, если нач.коорд. и точка по одну сторону.
Теорема: Пусть задано нормальное уравнение прямой xcos+ysin-P=0 и М1(x1;y1), тогда отклонение точки М1 = x1cos+y1sin-P=0
Задача: найти расстояние от точки М0(x0;y0) до прямой Ах+By+C=0. Т.к. d=|б|, то формула расстояний принимает вид d=| x0cos+y0sin-P|. d=|Ах0+By0+C|/sqrt(A2+B2)
ГИПЕРБОЛА.
Определение: ГМТ на плоскости модуль разности расстояний от которых до двух фиксированных точек, называемых фокусами, есть величина постоянная
Каноническое уравнение:
Будем считать, что фокусы гиперболы находятся на ОХ на одинаковом расстоянии от начала координат. |F1F2|=2c, М – произвольная точка гиперболы. r1, r2 – расстояния от М до фокусов;
,
x2c2-2a2xc+a2=a2(x2-2xc+c2+y2)
x2(c2-a2)-a2y2=a2(c2-a2)
c2-a2=b2
x2b2-a2y2=a2b2
- каноническое ур-е гиперболы
ПАРАБОЛА.
Определение: ГМТ на плоскости расстояние от которых до фиксированной точки на плоскости, называемой фокусом, равно расстоянию до фиксированной прямой этой плоскости называемой директрисой.
Каноническое уравнение:
Пусть фокус параболы находится на оси ОХ, а директриса расположение перпендикулярно оси ОХ, причем они находятся на одинаковом расстоянии от начала координат.
|r2-r1|=2a; a