Реферат: Числові характеристики системи випадкових величин та їх граничні теореми
.
.
Для опису зв'язків, що існують між проекціями випадкового вектора (x,h), крім коваріації можна використовувати числові характеристики умовних законів розподілу , .
Умовним середнім значенням і умовною дисперсією випадкової величини x за умови h =y називаються величини:
,
.
Аналогічно визначаються характеристики і .
Для опису випадкового вектора також вводять початкові і центральні моменти:
, .
2. Комплексна випадкова величина, характеристичні функції
Комплексна випадкова величина, що вводиться за формулою , є іншим способом опису випадкового вектора (,).
Випадкові величини і називаються незалежними, якщо незалежними є випадкові вектори (,) і (,).
,
,
,
,
,
,
,
,
.
Характеристичною функцією випадкової величини називається середнє значення виразу .
.
Функцію називають також характеристичною функцією відповідного закону розподілу:
(2)
Як видно з (2), характеристична функція є перетворенням Фур'є відповідної їй щільності імовірності: