Реферат: Числові характеристики системи випадкових величин та їх граничні теореми
1. Кореляційний момент, коефіцієнт кореляції
Кореляційним моментом (коваріацією) випадкових величин і називається математичне сподівання добутку відповідних ним центрованих величин:
. (1)
Властивості коваріації:
1. |
2. |
3. |
Перші дві з них очевидні, остання доводиться також легко:
Коефіцієнтом кореляції називається кореляційний момент нормованої випадкової величини:
Теорема. Для будь-яких випадкових величин , коефіцієнт кореляції причому знак рівності можливий тоді і тільки тоді, коли і з імовірністю 1 пов'язані лінійно.
Доведення. Обчислимо дисперсію лінійної комбінації випадкових величин і з довільним коефіцієнтом та врахуємо, що з властивостей дисперсії вона є невід'ємною.
При цьому отримаємо невід’ємну квадратичну форму відносно змінної з невід’ємним коефіцієнтом при .
Це можливо лише за умови, що її дискримінант . З урахуванням визначення (1) цю нерівність можна переписати у вигляді:
або
або мовою середніх квадратичних відхилень випадкових величин
.
Тобто
Доведемо тепер другу частину теореми: тоді і тільки тоді, коли і з імовірністю 1 пов'язані лінійно.
Необхідність:
Достатність:
, , ,
, .
Випадкові величини x,h називаються некорельованими, якщо їх коваріація дорівнює нулю. Якщо випадкові величини x, h незалежні, то вони некорельовані.
.
Зворотне твердження, взагалі кажучи, не має місця.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--