Реферат: Числові характеристики системи випадкових величин та їх граничні теореми

1. Кореляційний момент, коефіцієнт кореляції

Кореляційним моментом (коваріацією) випадкових величин і називається математичне сподівання добутку відповідних ним центрованих величин:

. (1)

Властивості коваріації:

1.
2.
3.

Перші дві з них очевидні, остання доводиться також легко:

Коефіцієнтом кореляції називається кореляційний момент нормованої випадкової величини:

Теорема. Для будь-яких випадкових величин , коефіцієнт кореляції причому знак рівності можливий тоді і тільки тоді, коли і з імовірністю 1 пов'язані лінійно.

Доведення. Обчислимо дисперсію лінійної комбінації випадкових величин і з довільним коефіцієнтом та врахуємо, що з властивостей дисперсії вона є невід'ємною.

При цьому отримаємо невід’ємну квадратичну форму відносно змінної з невід’ємним коефіцієнтом при .

Це можливо лише за умови, що її дискримінант . З урахуванням визначення (1) цю нерівність можна переписати у вигляді:

або

або мовою середніх квадратичних відхилень випадкових величин

.

Тобто

Доведемо тепер другу частину теореми: тоді і тільки тоді, коли і з імовірністю 1 пов'язані лінійно.

Необхідність:

Достатність:

, , ,

, .

Випадкові величини x,h називаються некорельованими, якщо їх коваріація дорівнює нулю. Якщо випадкові величини x, h незалежні, то вони некорельовані.

.

Зворотне твердження, взагалі кажучи, не має місця.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 194
Бесплатно скачать Реферат: Числові характеристики системи випадкових величин та їх граничні теореми