Реферат: Диференціальні операції в скалярних і векторних полях. Основні поняття і формули

1. Скалярне поле

Нехай – область у тривимірному просторі (або на площині). Кажуть, що в області задано скалярне поле, якщо кожній точці поставлено у відповідність деяке число .

Прикладами скалярних полів є поле температури даного тіла, поле густини даного неоднорідного середовища, поле вологості повітря, поле атмосферного тиску, поле потенціалів заданого електростатичного поля тощо.

Поверхня (лінія), на якій функція набуває одне й те саме значення, називається поверхнею (лінією) рівня скалярного поля (наприклад, поверхні або лінії постійної температури). Надаючи різних постійних значень: , отримаємо сім’ю поверхонь (ліній) рівня даного скалярного поля.

Фізичні скалярні поля не залежать від вибору системи координат: величина є функцією лише точки і, можливо, часу (нестаціонарні поля).

Якщо в просторі ввести прямокутну систему координат , то точка у цій системі координат матиме певні координати і скалярне поле стане функцією цих координат: .

2. Векторне поле

Кажуть, що в області задано векторне поле, якщо кожній точці поставлено у відповідність деякий вектор .

Фізичні приклади векторних полів: електричне поле системи електричних зарядів, яке характеризується в кожній точці вектором напруженості ; магнітне поле, утворене електричним струмом і яке характеризується в кожній точці вектором магнітної індукції ; поле тяжіння, утворене системою мас і яке характеризується в кожній точці вектором сили тяжіння , що діє в цій точці на одиничну масу; поле швидкостей потоку рідини, яке описується в кожній точці вектором швидкості .

Зручною геометричною характеристикою векторногополя є векторні лінії – криві, в кожній точці яких вектор напрямлений по дотичній до кривої. Векторні лінії поля тяжіння, електричного і магнітного полів називається силовими лініями, а поля швидкостей – лініями струму.

Нехай векторна лінія, яка проходить через точку , описується рівнянням , де – параметр. Умова колінеарності вектора поля і дотичного вектора в довільній точці цієї лінії має вигляд

,(1)

де – деяке число. Умову (1) можна записати також у вигляді

(2)

або, помноживши на , у вигляді

.(3)

Кожне із рівнянь (1) – (3) є диференціальним рівнянням векторних ліній у векторній формі і визначає множину векторних ліній. Конкретна векторна лінія, яка проходить через задану точку , визначається додатковою умовою


,(4)

де – радіус-вектор точки .

Фізичні векторні поля не залежать від системи координат: в кожній точці вектор повністю визначається своїм модулем і напрямом. Якщо в просторі введена прямокутна система координат, то векторне поле описується вектор-функцією трьох змінних або трьома скалярними функціями – її координатами:

.

Оскільки в прямокутних координатах, то векторне рівняння (3) для векторних ліній еквівалентне системі диференціальних рівнянь

,(5)

а додаткове векторне рівняння (4) еквівалентне таким умовам:

,(6)

де – координати точки.

3. Похідна за напрямом

Скалярне і векторне поля


і

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 196
Бесплатно скачать Реферат: Диференціальні операції в скалярних і векторних полях. Основні поняття і формули