Реферат: Диференціальні операції в скалярних і векторних полях. Основні поняття і формули
1. Скалярне поле
Нехай – область у тривимірному просторі (або на площині). Кажуть, що в області задано скалярне поле, якщо кожній точці поставлено у відповідність деяке число .
Прикладами скалярних полів є поле температури даного тіла, поле густини даного неоднорідного середовища, поле вологості повітря, поле атмосферного тиску, поле потенціалів заданого електростатичного поля тощо.
Поверхня (лінія), на якій функція набуває одне й те саме значення, називається поверхнею (лінією) рівня скалярного поля (наприклад, поверхні або лінії постійної температури). Надаючи різних постійних значень: , отримаємо сім’ю поверхонь (ліній) рівня даного скалярного поля.
Фізичні скалярні поля не залежать від вибору системи координат: величина є функцією лише точки і, можливо, часу (нестаціонарні поля).
Якщо в просторі ввести прямокутну систему координат , то точка у цій системі координат матиме певні координати і скалярне поле стане функцією цих координат: .
2. Векторне поле
Кажуть, що в області задано векторне поле, якщо кожній точці поставлено у відповідність деякий вектор .
Фізичні приклади векторних полів: електричне поле системи електричних зарядів, яке характеризується в кожній точці вектором напруженості ; магнітне поле, утворене електричним струмом і яке характеризується в кожній точці вектором магнітної індукції ; поле тяжіння, утворене системою мас і яке характеризується в кожній точці вектором сили тяжіння , що діє в цій точці на одиничну масу; поле швидкостей потоку рідини, яке описується в кожній точці вектором швидкості .
Зручною геометричною характеристикою векторногополя є векторні лінії – криві, в кожній точці яких вектор напрямлений по дотичній до кривої. Векторні лінії поля тяжіння, електричного і магнітного полів називається силовими лініями, а поля швидкостей – лініями струму.
Нехай векторна лінія, яка проходить через точку , описується рівнянням , де – параметр. Умова колінеарності вектора поля і дотичного вектора в довільній точці цієї лінії має вигляд
,(1)
де – деяке число. Умову (1) можна записати також у вигляді
(2)
або, помноживши на , у вигляді
.(3)
Кожне із рівнянь (1) – (3) є диференціальним рівнянням векторних ліній у векторній формі і визначає множину векторних ліній. Конкретна векторна лінія, яка проходить через задану точку , визначається додатковою умовою
,(4)
де – радіус-вектор точки .
Фізичні векторні поля не залежать від системи координат: в кожній точці вектор повністю визначається своїм модулем і напрямом. Якщо в просторі введена прямокутна система координат, то векторне поле описується вектор-функцією трьох змінних або трьома скалярними функціями – її координатами:
.
Оскільки в прямокутних координатах, то векторне рівняння (3) для векторних ліній еквівалентне системі диференціальних рівнянь
,(5)
а додаткове векторне рівняння (4) еквівалентне таким умовам:
,(6)
де – координати точки.
3. Похідна за напрямом
Скалярне і векторне поля
і
--> ЧИТАТЬ ПОЛНОСТЬЮ <--