Реферат: Диференціальні операції в скалярних і векторних полях. Основні поняття і формули
.
Розглянемо потенціальне поле . Його потенціал
. Обчислимо ротор цього поля:
.
Взагалі, ротор довільного потенціального поля дорівнює нулю (див. підрозділ 2). Тому кажуть, що потенціальне поле є безвихровим.
8. Соленоїдальне поле
Векторне поле називається соленоїдальним в області
, якщо в цій області
. Оскільки
характеризує густину джерел поля
, то в тій області, де поле соленоїдальне, немає джерел цього поля.
Наприклад, електричне поле точкового заряду соленоїдальне (задовольняє умову
) всюди поза точкою, де знаходиться заряд (в цій точці
). Векторні лінії соленоїдального поля не можуть починатися або закінчуватися на межі області, або бути замкненими кривими. Прикладом соленоїдального поля з замкненими векторними лініями є магнітне поле, яке створюється струмом у провіднику.
Якщо векторне поле можна подати як ротор деякого векторного поля
, тобто
, то вектор – функція
називається векторним потенціалом поля
.
Можна перевірити (див. докладніше п. 2), що , тобто поле
є соленоїдальним.
Довільне векторне поле можна подати у вигляді суми потенціального і соленоїдального полів.
9. Оператор Гамільтона
Згадаємо, що символ називається оператором частинної похідної по
. Під добутком цього оператора на функцію
розумітимемо частинну похідну
, тобто
. Аналогічно,
і
– оператори частинних похідних по
і по
.
Введемо векторний оператор «набла» або оператор Гамільтона:
.
За допомогою цього символічного (операторного) «вектора» зручно записувати і виконувати операції векторного аналізу.
У результаті множення вектора на скалярну функцію
отримуємо
:
.
Скалярний добуток вектора на вектор – функцію
дає
:
.
Векторний добуток вектора на вектор – функцію
дає
:
.
10. Нестаціонарні поля
Нехай в області визначено нестаціонарне скалярне поле
: величина
є функцією точки
і часу
. Приклад такого поля – змінний з часом розподіл температури в будь-якому середовищі (наприклад, в потоці рідини). Розглянемо точку
, яка рухається в області
(частинку рідини). Координати точки (частинки) змінюються з часом за відомим законом
. Величина
в рухомій точці
є складеною функцією
:
.
Обчислимо похідну по цієї функції (вона називається повною похідною). За правилом диференціювання складеної функції знаходимо
.
Вводячи в точці вектор швидкості
, отримуємо
Або