Реферат: Диференціальні рівняння першого порядку з відокремлюваними змінними, однорідні, лінійні, Бернулл

Однорідні диференціальні рівняння першого порядку зводяться до рівнянь з відокремлюваними змінними за допомогою підстановки Тоді (тут покладено ). Змінні відокремлюються, оскільки після підстановки в рівняння дістанемо

,

звідки

.

Інтегруючи це рівняння й повертаючись від змінної до змінної , отримуємо загальний розв’язок однорідного рівняння.

Прикладі 2. Розв’язати рівняння .

Р о з в ‘ я з о к. Це рівняння однорідне. Виконаємо у цьому рівнянні заміну залежної змінної Тоді

.

Відокремлюючи змінні, одержуємо: , звідки

.

Отже, загальний розв’язок рівняння має вигляд .

Приклад 3 . Покажемо, як розв’язується рівняння, наведене в прикладі 3, за допомогою полярних координат.

Перейдемо до нових змінних та за формулами

.

Звідси

Отже,

.

Права частина рівняння у нових координатах набуває вигляду

Прирівнюючи праву і ліву частини рівняння, дістанемо

.

На основі властивості пропорції позбудемося дробів:

Спрощуючи це рівняння, отримаємо

.

Відокремлюємо змінні

.

К-во Просмотров: 341
Бесплатно скачать Реферат: Диференціальні рівняння першого порядку з відокремлюваними змінними, однорідні, лінійні, Бернулл