Реферат: Диференціальні рівняння першого порядку з відокремлюваними змінними, однорідні, лінійні, Бернулл
.
(довільну сталу позначили як ) . Звідси .
Повернемось до старих змінних та й спростимо вираз. Отримаємо шуканий загальний інтеграл
або .
Зауваження. До однорідних рівнянь зводяться диференціальні рівняння вигляду
(12.12)
1. У разі, коли , слід виконати заміну змінних , де і - сталі, підібрані таким чином, щоб рівняння (12.12) перетворилося на однорідне рівняння вигляду
.
Оскільки та ,
сталі і слід підібрати так, щоб виконувались рівняння
Ця система має єдиний розв’язок (згідно з умовою ).
2. Якщо , то , оскільки , та . В цьому разі рівняння (12.12) подамо у вигляді
. (12.13)
Якщо в цьому рівнянні виконати заміну змінної за формулою , то рівняння (12.13) перетвориться у диференціальне рівняння з відокремлюваними змінними. Справді, маємо і , отже, .
Перейшовши до нової змінної у рівнянні (12.13), одержимо рівняння
,
у якому змінні легко відокремлюються.
Приклад 4. Розв’язати рівняння
.
Р о з в ‘ я з о к. Це - диференціальне рівняння вигляду (12.13). Перевіримо, чи виконується для нього нерівність . Отже, в цьому рівнянні слід виконати заміну змінних та за формулами . Підставимо нові змінні у вихідне рівняння:
.
Для визначення і отримаємо алгебраїчну систему двох лінійних рівнянь
головний визначник якої дорівнює і, отже, система має єдиний розв’язок: , . Це дозволяє виконати заміну змінних і : ,
в результаті якої отримуємо однорідне рівняння . Виконаємо в цьому рівнянні заміну змінної за формулою . Маємо .
Відокремлюємо змінні та :
.
Загальний інтеграл цього рівняння має вигляд