Реферат: Диференціальні рівняння першого порядку з відокремлюваними змінними, однорідні, лінійні, Бернулл
Р о з в ‘ я з о к. а) Згідно з методом варіації довільної сталої спочатку розв’яжемо відповідне рівняння без правої частини:
.
Маємо , звідки або . Варіюючи сталу , .
Підставимо та як функції від у вихідне рівняння:
.
Звідси і, отже, , де - довільна стала.
Таким чином, загальний розв’язок має вигляд
.
б) Цей же самий результат отримаємо, застосувавши до початкового рівняння підстановку :
або .
Знайдемо з рівняння . Відокремимо змінні: , звідки . Запишемо рівняння відносно , звідси . Отже загальний розв’язок ( довільна стала ) збігається як слід було чекати, із розв’язком, знайденим раніше.
Приклад 2. При відстоюванні суспензії має місце повільне осідання твердих частинок під дією сили ваги , якщо опір середовища пропорційний швидкості осідання частинок, що осідають в рідині без початкової швидкості.
Р о з в ’ я з о к. Згідно з законом Ньютона , де маса частинки; швидкість її руху; час; сила дії на частинку. Враховуючи умову задачі, маємо , де вага частинки; сила опору; коефіцієнт пропорційності. Отже, відносно швидкості руху дістаємо рівняння
,
або , причому .
Це лінійне диференціальне рівняння першого порядку. Щоб знайти його частинний розв’язок, що задовольняє початковій умові , спочатку відшукаємо загальний розв’язок рівняння. Використаємо метод варіації довільної сталої. Відповідне однорідне рівняння має вигляд
.
Після відокремлювання змінних та інтегрування отримаємо
, звідки .
Щоб знайти загальний розв’язок рівняння з правою частиною, вважаємо, що в останній рівності .
Тоді ,
і відносно одержується, згідно з умовою, таке рівняння:
,або .
Звідси ,
де довільна стала. Інтегруючи, маємо
.
Тоді загальний розв’язок рівняння набуває вигляду
,або .
Поклавши тут і , знайдемо, що .