Реферат: Дифференциальные уравнения I и II порядка
Например, пусть дано дифференциальной уравнение .
Тогда любая функция вида y=c1 sinx+c2 cosx, где c1 , c2 – произвольные постоянные, является решением этого уравнения.
Действительно, дифференцируя уравнение y=c1 sinx+c2 cosx дважды по x получаем . Подставляя выражения для и y в левую часть исходного дифференциального уравнения получаем .
Процесс решения дифференциального уравнения называют интегрированием. Поэтому само решение называют еще интегралом уравнения.
Как правило, дифференциальному уравнению отвечает множество решений (смотрите вышеприведенный пример), задаваемых семейством функций y=f(x,c) в явном виде или Ф(x,y,c)=0 в неявном виде. В этих уравнениях с-параметр семейства. Таких параметров, вообще говоря, может быть несколько.
В общем случае обыкновенному дифференциальному уравнениюn-го порядка
отвечает семейство решений, содержащих n параметров.
Определение. Общим решением дифференциального уравнения n-го порядка называется функция y=f(x, c1 , c2 , …, cn ), зависящая от аргумента x и n произвольных постоянных c1 , c2 , …, cn , которая будучи подставлена в уравнение обращает его в тождество.
Отметим, что эта функция может задаваться и неявным образом, тогда она представляется уравнением Ф(x , y,c1 , c2 , …, cn )=0.
Общее решение дифференциального уравнения называется также общим интегралом.
Чтобы из общего уравнения выделить некоторое конкретное частное решение дифференциального уравнения, необходимо задать значения для параметров c1 , c2 , …, cn . Обычно значения этих произвольных постоянных c1 , c2 , …, cn определяются заданием начальных условий: y(x0 )=y0 , . Эти начальные условия дают соответственно n уравнений
,
,
,
………………………………
,
решая которые относительно c1 , c2 , …, cn находят значения этих постоянных.
Например, для дифференциального уравнения 1-го порядка общее решение имеет вид y=f(x,c). Тогда начальное условие y(x0 )=y0 выделяет из всего семейства интегральных кривых кривую, проходящую через точку M(x0 ,y0 ).
1. Геометрическая интерпретация.
Геометрическое представление решения дифференциального уравнения рассмотрим на примере уравнения 1-го порядка вида .
В плоскости введем декартову систему координат с осями x и y. Каждой точке M(x,y) плоскости поставим в соответствие вектор , отложенный от точки M.
Таким образом дифференциальное уравнение порождает в плоскости XOY поле направлений (естественно, указанное поле существует только в области определения функции f(x,y)). Тогда решением дифференциального уравнения будет такая кривая, которая в каждой точке касается вектора поля направляющей.
Действительно, пусть y=h(x) уравнение указанной выше кривой. Тогда в каждой точке кривой касательная к ней имеет направление, где a - угол наклона касательной к оси x. Из (условие касания кривой с вектором ) и равенства абсцисс векторов и вытекает тождество , выполняющееся в точках кривой y=h(x). Последнее означает, что y=h(x) является решением уравнения .
И обратно, если y=h(x) решение дифференциального уравнения , то . Последнее соотношение означает, в каждой точке кривой y=h(x) направление ее касательной совпадает с вектором поля направлений, т.е. в каждой точке кривая y=h(x) касается вектора поля направлений.
В качестве иллюстрации возьмем уравнение .
Для построения поля направлений удобно использовать метод изоклин. Изоклина это линия в каждой точке которой вектор поля направлений одинаков. Таким образом, изоклины даются уравнением f(x,y)=l, и каждой точке изоклины соответствует вектор .
Для рассматриваемого дифференциального уравнения изоклины задаются уравнением или y=-lx.
Как видно, изоклинами являются прямые, проходящие через точку начала координат. На рис. 2изображены изоклины отвечающие значениям , черточками изображены направления векторов в таких изоклин. Из рис. 2 видно, что интегральные кривые уравнения напоминают гиперболы. Действительно, как будет показано ниже, общее решение рассматриваемого дифференциального уравнения имеет вид yx=c, т.е. задает семейство гипербол. Параметрам c>0 отвечают гиперболы I и III координатных узлов, значениям c<0 отвечают гиперболы II и IV координатных узлов.
2. Существование решения дифференциального уравнения первого порядка .
Задано дифференциальное уравнение вида