Реферат: Дифференциальные уравнения I и II порядка

Пусть y=y(x) – решение данного уравнения, удовлетворяющее начальному условию y(x0 )=y0 . Тогда из следует, что f(x,y(x)) – производная функции y(x) и, следовательно,y(x) – первообразная для f(x,y(x)). Если F(x) – некоторая другая первообразная для f(x,y(x)), то , как известно,y(x)=F(x)+c0 . Из y(x0 )=y0 , y(x0 )=F(x0 )+c0 получаем c0 =y0 -F(x0 ), т.е. y(x)=F(x)-F(x0 )+y0 .

Семейство всех первообразных для f(x,y(x)) представляется неопределенным интегралом . Тогда разность F(x)-F(x0 ) равна значению определенного интеграла ,

И, следовательно, получаем

,

т.е. y(x) является решением интегрального уравнения

.

Задача поиска решения дифференциального уравнения , удовлетворяющего начальному условию y(x0 )=y0 , получила в литературе название задачи Коши.

Первое доказательство существования и единственности решения дифференциального уравнения было получено в 1820-1830 г.г. и связано с именем Коши (1789-1857).

Теорема. Пусть задано уравнение и начальные значения x0 ,y0 .

Тогда если

А) функция f(x,y) непрерывна по обеим переменным x и y в замкнутой области ;

Б) функция f(x,y) удовлетворяет в областиR по переменной y условию Липшица, т.е. , где L – постоянная;

То существует единственное решение y=y(x) указанного уравнения, удовлетворяющее начальному условию y(x0 )=y0 и являющееся непрерывно дифференцируемым в интервале , где .

Доказательство теоремы приводить не будем, укажем лишь, что может быть осуществлено методом последовательных приближений Пикара (1856-1941), использующего ранее приведенное интегральное уравнение.

Последовательность функций, дающих приближенное решение уравнения, строится по правилу:

,

,

………………………………

.

Далее можно показать, что функция дает единственное решение дифференциального уравнения в промежутке .

Выше был рассмотрен случай дифференциального уравнения первого порядка разрешенного относительно производной y/ .

Более общим видом является случай уравнения вида , не разрешимого относительно производной y/ .

Допустим, что данное уравнение может быть разрешено относительно y/ , и в общем случае это дает несколько вещественных уравнений (k=1,2,…,m).

Если при этом каждая из функций (k=1,2,…,m) удовлетворяет теореме существования и единственности решения, то через точку (x0 ,y0 ) будет проходить m интегральных кривых уравнения . Пусть при этом каждая точка кривой имеет свой наклон касательной, отличный от других кривых. В этом случае также говорят, что задача Коши имеет единственное решение. Общим решением уравнения называют совокупность всех общих решений каждого из уравнений (k=1,2,…,m), т.е. решения y=Yk (x,c) (k=1,2,…,m).

Пример. Рассматривается дифференциальное уравнение вида . Разрешая его относительно y/ получаем два уравнения y/ =1 и y/ =-1, т.е. через каждую точку плоскости xOy проходят две интегральные кривые, касательные к которым имеют два разных угла наклона к оси Ox в 450 и 1350 . Общим решением уравнения будет семейство интегральных кривых y=x+c и y=-x+c.

Особым решением дифференциального уравнения

или

называется решением y=y(x), которое во всех своих точках не обладает свойством единственности. Через каждую точку такого решения проходит не менее двух интегральных кривых, имеющих одинаковое направление касательной.

Отметим, что из сказанного выше следует, что дифференциальное уравнение может иметь решения не являющиеся ни частными, ни особыми, а именно, если эти решения получаются склеиванием кусков из частных и особых решений.

К-во Просмотров: 617
Бесплатно скачать Реферат: Дифференциальные уравнения I и II порядка