Реферат: Дифференцированные уравнения
A(w)=ЅW(jw)Ѕ
A(w)== (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=argk - arg(1 - 2xTjw - T2 w2 )= - arctg
j(w)= - arctg (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
4.1.5. КОЛЕБАТЕЛЬНОЕ КОНСЕРВАТИВНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a2 +ao y(t) =bo g(t) (1)
Коэффициенты имеют следующие значения:
a2 =0,0588
ao =12
bo =31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
+y(t)=g(t)
+ y(t)=kg(t) (2),
где k=-коэффициент передачи,
T2 =-постоянная времени.
Это уравнение является частным случаем колебательного уравнения при x=0.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(T2 p2 +1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=s2 Y(s)
g(t)=G(s)