Реферат: Дійсні числа

У ШКМ розглядається одна з провідних ліній розвитку –вчення про число. В науці існує теорія чисел, але вона складна і не розглядається в школі. Але оскільки числа утворюють базис математики, то важливим є засвоєння основних елементів цієї теорії в шкільному курсі. Однією з тем даної теорії є “дійсне число”. За шкільною програмою на її вивчення відводиться 2 години, що є дуже мало. Тому від вчителя вимагається велика професійна підготовка для пояснення цього матеріалу, глибокі знання методики викладання його: оскільки вчитель повинен систематизувати вже набуті знання учнів, ввести нові поняття, пояснити їх зрозуміло для учнів і закріпити новий матеріал.

В кінці уроку, учень повинен впевнено відповідати на такі питання: що таке ірраціональне число? Що означає число ? Яким чином можна уявити множину дійсних чисел?

Для чого це треба? Дуже часто вчителі стикаються з такою проблемою, що старшокласники не можуть розкрити зміст ірраціонального числа, і це гальмує запланований процес роботи. Вважаючи, що всі числа – елементарність, насправді, учні з часом стикаються з незнанням так званого елементарного. Надолужувати втрачене, вчитель іноді не має часу, тому в знаннях учнів залишаються недоліки, які виправляються лише при бажанні самого школяра вивчити те, чого не знає.

В цій роботі я досліджуватиму, як краще викладати тему “Дійсне число”, щоб учні оволоділи системою знань з цього матеріалу, вмінням і навичками, які потрібні їм для загального розвитку, для їх практичної діяльності.


РОЗДІЛ І. Історія виникнення проблеми ірраціонального числа.

Сукупність раціональних чисел немає властивості неперервності. Тому вона виявилась недостатньою при вивченні величин, які змінюються неперервно. Виникла потреба в розширенні поняття числа, яка полягає в переході від множини раціональних чисел до множини дійсних чисел. Цей перехід полягає в приєднанні до раціональних чисел так званих ірраціональних чисел, які виражаються через раціональні лиш наближено.

Ірраціональні числа виникли пізніше від раціональних і їх довго не визнавали за числа як такі; називали то “несумірними”, то “невиразними”, то “супротивними щодо розуму”.

Ще стародавні греки відкрили в геометрії існування несумірних відрізків. Це відкриття було поворотним пунктом в історії античної математики. Важко переоцінити значення цього відкриття. Ми не знаємо точно дослідження яких питань привело до відкриття несумірності. Це могло статися:

1).в геометрії при знаходженні спільної міри сторони і діагоналі квадрата;

2).в арифметиці могло виникнути питання про точне визначення такого дробу, квадрат якого дорівнює два.

Як би там не було мова йшла про відшукання і дослідження величини, яку ми тепер позначаємо .

Відкриття факту, що між двома відрізками—стороною і діагоналлю квадрата не існує спільної, хоч як завгодно малої, міри, привело до справжньої кризи основ грецької математики.

Піфагорійці, які відкрили існування несумірних відрізків, тримали це відкриття в таємниці, бо воно суперечило їх ідеалістичному вченню про гармонію чисел у навколишньому світі; не можна було визнавати справжнім їх учення про цілочисельну основу всього існуючого, у тому числі й геометричних величин.

“Піфагорійці пов’язували вічну душу з вічними формами числа, приписуючи цю властивість зокрема числу 10=1+2+3+4. Увесь світ, за їх ученням, складався з чистих чисел. Ця форма крайнього ідеалізму проявляється у Святій Трійці, чотирьох євангелістах, семи смертних гріхах тощо.

Відкриття несумірності діагоналі квадрата з його стороною нанесло серйозний удар по всій піфагорійській школі і сприяло її розпаду.

Незабаром було встановлено, що несумірність діагоналі і сторони квадрата не є винятком, що існують й інші величини, відношення яких не можна подати відношенням двох (цілих) чисел. Феодор з Кірени (Vст.до н.е.) показав, що сторони квадратів, площі яких лорівнюють 3, 5, 6, 7,…, 17, несумірні з стороною одиничного квадрата.

Замість того, щоб розширити поняття числа, греки дійшли висновку, що треба відокремити вивчення цілих чисел від геометрії; встановлюється точна межа між арифметикою і геометрією.

Усі ірраціональності, до яких ведуть розв'язування квадратних рівнянь, Евклід побудував суто геометрично. Відомо “задача про подвоєння куба” привела греків до ірраціональностей вищого порядку; цю задачу вони розв'язали також геометрично і за допомогою побудови довели існування несумірних відрізків вищого порядку.

Відкриттю несумірних величин надавали важливого значення ще в старовину. Так, видатний старогрецький філософ Арістотель (384-322р.р.дон.е.) вказував, що воно викликало здивування, як і всяке справжнє наукове відкриття.

Факт існування несумірних відрізків не гальмував розвитку геометрії. Греки розробили теорію відношень відрізків, яка враховувала можливість їх несумірності; вони вміли порівнювати такі відношення за величиною, виконувати над ними арифметичні дії (в суто геометричній формі), інакше кажучи, користувалися такими відношеннями як числами.

Щоб позбутися ірраціональних чисел, греки вживали їх наближення, досить точні для практичних обчислень. В Архімеда ці наближення мали науковий характер. І хоч Герон Олександрійський при обчисленні площ добуває квадратний корінь з добутку чисел, а Діофант Олександрійський говорить уже про числа нераціональні, однак, ідея про те, що відношеня довжин несумірних відрізків можна розглядати як число, в грецькій математиці не була усвідомлена до кінця.

Отже: можна сказати, що у вирішенні проблеми в галузі розширення поняття про число греки майже нічого не зробили. Як для Евкліда, так і, по суті, для Діофанта існувало тільки ціле число.

Індійці і араби розглядали ірраціональні числа як числа нового виду. Вони не задумувались над тим, чи законно додавати, перемножувати, ділити ірраціональні числа. Так, наприклад, Бхаскара знищує ірраціональніcть у знаменнику, множачи чисельник і знаменник на той самий ірраціональний множник.

Термін “ірраціональний” у математичному розумінні вперше застосував у XIV ст.англійський математик Брадвардін (близько 1290-1349). Поняття числа з цим терміном пов’язує вперше (1544) німецький математик Штіфель. Але й він під час введення дій над ірраціональними числами вдається, як і Евклід, до відрізків.

Таким міркуванням властива загальна риса – ірраціональні числа не вважали повноправними числами. Але ці числа треба було розглядати, вивчати, бо зокрема, обчислюючи ірраціональні корені алгебраїчних рівнянь і логарифми чисел, визначаючи значення тригонометричних функцій і т.д., доводилося шукати їх достатні раціональні наближення і, по суті, оперувати ними як числами.

Велике значення для розвитку поняття ірраціонального числа мали праці Стевіна. Він був першим математиком, який повністю підтримував точку зору визнання повної рівноправності раціональних та ірраціональних чисел, однак, останні почали застосовувати разом з від’ємними числами тільки після появи геометрії Декарта (1637).

Ідея Декарта привела до узагальнення поняття про число. Між точками прямої і числами було встановлено взаємно однозначну відповідність. У математику була введена змінна величина.

До початку XVIII ст. сформувалися три тлумачення поняття ірраціональної величини:

1).ірраціональне число розглядали як корінь n-го степеня з цілого або дробового числа, коли результат добування кореня не можна виразити “точно” цілим або дробовим числом (найдавніше);

2).ірраціональне число трактували як межу, до якої його раціональні наближення можуть підійти як завгодно близько (це тлумачення йде від Стевіна і Валліса);

К-во Просмотров: 553
Бесплатно скачать Реферат: Дійсні числа