Реферат: Дійсні числа
1. Будь-яка арифметична операція над раціональними числами в результаті приводить до раціональних чисел.
2. Арифметичні дії над ірраціональними числами в результаті може привести як до раціональних так і до ірраціональних чисел.
3. Якщо дія виконується над раціональним та ірраціональним числами, то одержимо—ірраціональне число .
§3. Множина дійсних чисел .
Якщо множину раціональних чисел доповнити множиною ірраціональних чисел, то разом вони складають множину дійсних чисел . Цю множину позначають літерою R; використовують також символічний запис (-;+).
Множину дійсних чисел можна описати таким чином: це множина скінченних і нескінченних дробів .
Кожне дійсне число можна зобразити точкою на координатній прямій, і навпаки, кожна точка координатної прямої має дійсну координату. Математично про це говорять так: між множиною дійсних чисел і множиною точок координатної прямої встановлено взаємно однозначну відповідність. Координатна пряма є геометрична модель множини дійсних чисел, тому координатну пряму часто називають числовою прямою.
Доцільно звернути увагу на те, що координатною прямою учні користувалися, починаючи з 5-го класу. Тепер очевидно, що в їх знаннях був недолік: не для будь-якої точки вони змогли б знайти координату.
Розглянемо приклад. Дана, координатна пряма, на її одиничному відрізку побудований квадрат, діагональ квадрата ОВ відкладена на координатній прямій від точки О вправо, одержали точку D (мал.1). Яка координата точки D? вона дорівнює довжині діагоналі квадрата, тобто . Це число нам відоме, і воно не ціле і не дріб. Отже, ні в 5-му класі, ні в 6-му, ні в 7-му, координату точки D учні не знайшли б.
Тому до сих пір і казали “координатна пряма”, а не “числова пряма”.
Відмітимо, що був ще один недолік в знаннях з алгебри. Розглядаючи вираз із змінними, завжди вважалось, що змінні можуть набувати будь-яких значень, але тільки раціональних, бо не було інших. На справді змінні можуть набувати будь-які дійсні значення. Наприклкад, в тотожності
(a+b)(a-b)=a2 -b2
в ролі a і b можуть бути будь-які дійсні числа.
Для дійсних чисел a, b, c виконуються такі закони:
а+b=b+a;
аb=ba;
а+(b+c)=(a+b)+c;
а(bc)=(ab)c;
(a+b)c=ac+bc та інші.
Правила також виконуються:
Добуток (частка) двох додатних чисел-додатне число;
Добуток (частка) двох від’ємних чисел-додатне число;
Добуток (частка) додатнього і від’ємного чисел-від’ємне число.
Дійсні числа можна порівнювати одне з одним, використовуючи наступне означення.
Означення. Кажуть, що дійсне число а більше (менше) дійсного числа b, якщо їх різниця а-b-додатнє (від’ємне число). Пишуть a>b (a<b).
З цього означення видно, що будь-яке додатнє число а більше 0 ( оскільки різнця а-0=а-додатнє число), а будь-яке від’ємне число b менше 0 (оскільки різнця b-0=b- від’ємне число). Отже,
a>0 –означає, що а-додатнє число;
a<0 –означає, що а- від’ємне число;
a-b>0 –означає, що а-b додатнє число,тобто a>b;
a-b<0 – означає, що а-b від’ємне число,тобто a<b;
Поряд із знаками строгих нерівностей (<,>) використовуються знаки нестрогих нерівностей:
а≥0 означає, що а більше або рівне нулю.
а≤0 означає, що а менше або рівне нулю.
а≥b означає, що а більше або рівне b.
а≤b означає, що а менше або рівне b.
Наприклад, для будь-якого числа а справедлива нерівність а2 ≥0; для будь-яких чисел а і b справедливо: (а+b)≥0.