Реферат: Диспетчеризация в строительстве
Р1 (t)= e- λ1t
где λ1 – интенсивность появления дефектов и отказов, устраняемых в процессе осмотров (определяется статистически по данным регистрации дефектов и отказов в эксплуатационной организации); t – время, за которое характеризуется бездефектность элемента.
Для определения второго состояния элемента рассмотрим малый интервал времени (τ,τ+dτ), предшествующему моменту t. Вероятность того, что в этом интервале появится дефект, равна f1 (τ) Вероятность того, что с этого момента до t будет обнаружен и устранен дефект и предотвратится отказ элемента, определяется выражением
Р2 (t-τ) =e- λ2(t-τ)
где λ2 - интенсивность появления отказа элемента после устранения выявленных в процессе осмотра дефектов (определяется по числу заявок в диспетчерскую систему по данному виду элемента).
На основании теоремы умножения вероятностей находим элементарное значение вероятности появления дефекта и его устранения с восстановлением эксплуатационных характеристик:
Р2 (t-τ) f1 (τ) dτ.
Суммируя по всем τ от 0 до t, найдем вероятность второго состояния элемента:
t t
Р2 (t) = ∫ Р2 (t- τ)f1 (τ) dτ = ∫ λ1 e- λ2(t-τ) e- λ1(t-τ) dτ =(λ1 /λ 2 - λ1 )( e- λ1t - e- λ2t )
0 0
Третье состояние элемента - появился дефект, но не устранен и перерос в отказ - имеет математическое выражение
Рз (t)=1 -Pi (t)- Р2 (t)
Работоспособность элемента сохраняется, если он находится в первом и втором состоянии. Просуммируем вероятности этих состояний:
Р(t)= Р1 (t)+Р2(t)= e- λ1t +(λ1 /λ 2 - λ1 )( e- λ1t - e- λ2t )
Очевидно, что мероприятия осмотра повышают безотказность (бездефектность) элемента на Р2 (t).
Для определения периодичности осмотров t, при котором воздействие осмотра на повышение бездефектность элемента имеет наибольшее значение, необходимо выражение Р2 (t) продифференцировать по t и производную приравнять к нулю. Решив полученное уравнение относительно t, находим оптимальный период между осмотрами:
tопт = (lnλ1 - lnλ2 ) / (λ1 - λ2 ). (1.6)
Как видно на рис. 2, не всегда tопт соответствует требуемой безотказности конструктивного элемента или инженерной системы. В связи с этим при назначении периода между осмотрами поступают следующим образом:
если tопт вычисленное по формуле (1.6), соответствует Р(t) ≥ 0,95, его принимают для назначения периода между осмотрами данного элемента;
если tопт , вычисленное по формуле (1.6), соответствует Р(t) < 0,95, то период между осмотрами определяют графически; для этого из точки А на оси ординат (см. рис. 2), соответствующих значению Р(t) =0,95, проводят горизонтальную линию, параллельную оси абсцисс, до пересечения с кривой Р(t) ; из точки пересечения В проводят прямую, параллельную оси ординат, до пересечения с осью абсцисс; точка С пересечения этой линии на оси абсцисс дает искомое значение периода между осмотрами tосм .
В случае, когда вычисленное по приведенной выше методике время между очередными осмотрами примет значение tосм ≥ 6 мес., конструкции и инженерные системы проверяют в ходе общих весеннего и осеннего осмотров.
Определение параметровпри планировании мероприятий технической эксплуатации возможно только при наличии достаточно полной и достоверной информации о состоянии эксплуатируемых элементов и инженерных систем зданий. Наиболее объективную информацию получают в условиях работы автоматизированных систем управления эксплуатацией зданий, низовым звеном которых являются диспетчерские службы эксплуатационных организаций. Сбор и хранение информации о состоянии частей зданий, учет и обработка данных об отказах и дефектах должны исключать влияние субъективных факторов. Автоматизированные системы позволяют не только рассчитывать параметры эффективной организации эксплуатационных процессов по устранению дефектов и отказов. На основе обработки статистических данных об изменении состояния конструкций и инженерных систем они прогнозируют оптимальные периоды и методы выполнения эксплуатационных мероприятий, высокую культуру обслуживания населения при наименьших материальных, трудовых и энергетических затратах.
С этой целью в диспетчерской системе устанавливают периферийные автоматические устройства для сбора первичной информации, в которых автоматически кодируются данные о виде и месте неисправностей, а также другие реквизиты, необходимые для объективной оценки состояния частей здания и принятия мер по своевременному устранению возникающих неисправностей. Информация может находиться как на контроле, когда система периодически выдает сигнал о существовании неисправности, так и в режиме хранения, когда информац?