Реферат: Эконометрика 6
(см. «Дисперсионный анализ » в прил. 1 ).
Табличное значениеF -критерия Фишера для уровня значимости a=0,05 и чисел степеней свободы числителя (регрессии) и знаменателя (остатка) составляетF таб =5,32. Так как F -статистика превышает табличное значениеF -критерия Фишера, то это свидетельствует о статистической значимости уравнения регрессии в целом. На этот же факт указывает и то, что вероятность случайного формирования уравнения регрессии в том виде, в каком оно получено, составляет 8,49×10-5 (см. «Значимость F » в «Дисперсионном анализе » прил. 1 ), что ниже допустимого уровня значимости a=0,05.
Среднюю относительную ошибку аппроксимации определяем по приближенной формуле
,
где млн. руб. — средний объем выпускаемой продукции, определенный с помощью встроенной функции «СРЗНАЧ » (см. «Исходные данные » в прил. 1 ).
Значение Е отн показывает, что предсказанные уравнением регрессии значения объема выпускаемой продукции Y отличаются от фактических значений в среднем на 7,1 %. Линейная модель имеет хорошую точность.
По результатам проверок, проведенных в пунктах 3 — 5, можно сделать вывод о достаточно хорошем качестве линейной модели и возможности ее использования для целей анализа и прогнозирования объема выпускаемой продукции.
6. Спрогнозируем объем выпускаемой продукции Y , если прогнозное значение объема капиталовложений X составит 80 % от своего максимального значения в исходных данных:
- максимальное значение X —x max =59 млн. руб. (см. «Исходные данные » в прил. 1 );
- прогнозное значение X — млн. руб.
Среднее прогнозируемое значение объема выпускаемой продукции (точечный прогноз ) равно
млн. руб.
Стандартная ошибка прогноза фактического значенияобъема выпускаемой продукцииy 0 рассчитывается по формуле
млн. руб.,
где млн. руб. — средний объем капиталовложений; млн. руб. — стандартное отклонение объема капиталовложений (определены с помощью встроенных функций «СРЗНАЧ » и «СТАНДОТКЛОН ») (см. «Исходные данные » в прил. 1 ).
Интервальный прогноз фактического значения объема выпускаемой продукцииy 0 с надежностью (доверительной вероятностью) g=0,9 (уровень значимости a=0,1) имеет вид:
млн. руб.,
гдеt таб =1,860 — табличное значение t -критерия Стьюдента при уровне значимости a=0,1 и числе степеней свободы .
Таким образом, объем выпускаемой продукции Y с вероятностью 90 % будет находиться в интервале от 43,2 до 58,8 млн. руб.
7. График, на котором изображены фактические и предсказанные уравнением регрессии значения Y строим с помощью диаграммы EXCEL (меню «Вставка» ® «Диаграмма… » ® «Точечная »). Далее строим линию линейного тренда (меню «Диаграмма» ® «Добавить линию тренда… » ® «Линейная »), и устанавливаем вывод на диаграмме уравнения регрессии и коэффициента детерминации R 2 :
Точки точечного и интервального прогнозов наносим на график вручную (прил. 3 ).
8. Логарифмическую, степенную и показательную модели также строим с помощью диаграммы EXCEL (меню «Вставка» ® «Диаграмма… » ® «Точечная »). Далее последовательно строим соответствующие линии тренда (меню «Диаграмма» ® «Добавить линию тренда… »), и устанавливаем вывод на диаграмме уравнения регрессии и коэффициента детерминации R 2 :
Графики линий регрессии, уравнения регрессии и значения R 2 приведены в прил. 4 . Рассмотрим последовательно каждую модель.
1) Логарифмическая модель :
.
Значение параметра b 1 =29,9 показывает, что при увеличении объема капиталовложений X на 1 % объем выпускаемой продукцииY возрастает в среднем на млн. руб.
Коэффициент детерминации R 2 »0,898 показывает, что логарифмическая модель объясняет 89,8 % вариации объема выпускаемой продукции Y .
F -статистика Фишера логарифмической модели определяется через коэффициент детерминации R 2 по формуле
.
Табличное значениеF -критерия Фишера одинаково как для линейной, так и для всех нелинейных моделей, которые здесь строятся (F таб =5,32). Так как F -статистика превышает табличное значениеF -критерия, то это свидетельствует о статистической значимости уравнения логарифмической регрессии.
Стандартная ошибка логарифмической регрессии также рассчитывается через коэффициент детерминации R 2 по формуле
млн. руб.,
где млн. руб. — стандартное отклонение объема выпускаемой продукции, определенное с помощью встроенной функции «СТАНДОТКЛОН » (см. «Исходные данные » в прил. 1 ).
Среднюю относительную ошибку аппроксимации определяем по приближенной формуле
.
Предсказанные уравнением логарифмической регрессии значения объема выпускаемой продукции Y отличаются от фактических значений в среднем на 6,2 %. Логарифмическая модель имеет хорошую точность.
2) Степенная модель:
.
Показатель степени b 1 =0,721 является средним коэффициентом эластичности . Его значение показывает, что при увеличении объема капиталовложений X на 1 % объем выпускаемой продукцииY возрастает в среднем на 0,721 %.