Реферат: Экономико-математическое моделирование

3) Верификация модели и уточнение ее параметров

4) Уточнение всех параметров системы и соответствие параметров модели, их необходимая валидация (исправление, корректирование).

Этап подгонки модели многократный.

2.4. Оптимальность управления и достаточность системы ограничений.

В экономических системах (моделях) критерием оптимальности выбирают параметры, как правило, определяющие наилучшим образом эффективность данной системы. Такими параметрами могут быть максимальная прибыль и затраты, минимальное время достижения цели и т.д.

Вектор оптимального управления – набор тех параметров, которые обеспечивают оптимальную траекторию функционирования данной ЭС. В любой модели (ЭС) имеются ограничения по ресурсам, по фондам и т.д. Поэтому система ограничений W – запись условий в виде уравнений, неравенств, в которых существует единственное оптимальное решение. Совместимость ограничений – обязательное условие разрешимости любой модели. На практике – это запасы ресурсов, сырья, трудовые ресурсы, финансовые ресурсы, др.

“Смягчить ограничение” - значит, получить показатель оптимизации оптимистичным.

“Ужесточить ограничения” - сделать более строгими, значит получить показатель оптимизации пессимистичным.

Ограничения могут встречаться в разных комбинациях.


ЭММ линейна тогда и только тогда, когда целевая функция и система ограничений линейны. Любая комбинация:

- целевая функция линейна - W нелинейна;

- целевая функция нелинейна - W линейна;

- целевая функция нелинейна - W нелинейна;

приводит к нелинейности модели.

2.5. Формальная классификация моделей.

Признак классификации Модель
1. Целевое назначение Прикладные, теоретико-аналитические
2. По типу связей Детерминированные, стохастические
3. По фактору времени Статические, динамические
4. По форме показателей Линейные, нелинейные
5. По соотношению экзогенных и эндогенных переменных Открытые, закрытые
6. По типу переменных Дискретные, непрерывные, смешанные
7. По степени детализации Агрегированные (макромодели), детализированные (микромодели)
8. По количеству связей Одноэтапные, многоэтапные
9. По форме представления информации Матричные, сетевые
10. По форме процесса Аналитические, графические, логические
11. По типу математического аппарата Балансовые, статистические, оптимизационные, имитационные, смешанные

Тема 3. Матричные ЭММ. Модель межотраслевого баланса.

3.1. Основные соотношения и понятия модели.

Матричные экономико-математические модели предназначены для анализа и планирования производства и распределения про­дукции на различных уровнях — от отдельного предприятия до народного хозяйства в целом.

Положительными и ценными качествами данной модели являются общность расчетов, которые опираются на знание коэффициентов прямых и полных материальных затрат.

Основу баланса составляет совокупность всех отраслей мате­риального производства; их число равно п. Каждая отрасль дважды фигурирует в балансе: как производящая и как потребляющая. Отрасли какпроизводителю продукции соответ­ствует определенная строка, а отрасли какпотребителю про­дукции — определенный столбец.

Если номер любой производящей отрасли обозначить через i, а номер любой потребляющей отрасли — через j, то находящиеся на пересечении отраслей (т. е. соответственно строк и столбцов) величины х ij нужно понимать как стоимость средств производства, произведенных в i отрасли и потребленных в качестве материальных затрат в j-и отрасли.

хij – технологический коэффициент.

Матричная модель межотраслевого баланса

Производящая отрасль Потребляющая отрасль Продукция, тыс.грн.
1 2 3 j N Конечная Валовая
1 x11 x12 x13 x1n y1 X1
2 x21 x22 x23 x2n y2 X2
3 x31 x32 x33 x3n y3 X3
I ...
N xn1 xn2 xn3 xnn yn Xn
Оплата труда v1 v2 v3 vn vкон -
Чистый доход, тыс. грн. m1 m2 m3 mn mкон -
Валовая продукция, тыс. грн. X1 X2` X3 Xn - X

В столбцах межотраслевого баланса отражается структура материальных затрат и чистой продукции каждой отрасли. Допустим, 1-я отрасль—это производство электроэнергии, 2-я — угольная промышленность. Тогда величина х11 показывает стоимость электроэнергии, израсходованной внут­ри 1-й отрасли для собственных производственных нужд. Вели­чина x12 отражает затраты угля в производстве электроэнергии. В целом же столбец х11 , x21 , х31 , ..., хn 1 характеризует структуру материальных затрат 1-й отрасли за отчетный год в разрезе от­раслей-поставщиков.

В балансе отражены не только материальные затраты, но и чистая продукция отраслей. Так, чистая продукция 1-й отрасли характеризуется суммой оплаты труда v1 и чистого дохода (при­были) m1 . Итог материальных затрат и чистой продукции равен, очевидно, валовой продукции отрасли (например, для 1-й отрас­ли—величине Х1 ). Таким образом, можно записать:

Х1=х112131 +…+хn1 +v1 +m1 = (1)

То же соотношение для любой отрасли имеет следующий вид :

X(2)

Если рассматривать модель по строкам межотраслевого баланса, то здесь представлено распределение годового объема продукции каждой отрасли материального производства

Х1 = х111213 + … +х +y 1 =

тогда для любой производящей отрасли

Хi = (3)

Если сравнить правую и левую части уравнений (2) и (3), то можно отметить, что у них присутствует общий член х ij .Тогда можно записать выражение:

(4)

К-во Просмотров: 701
Бесплатно скачать Реферат: Экономико-математическое моделирование