Реферат: Экономико-математическое моделирование

1) матричную модель народного хозяйства в целом (государства, республики);

2) матричную модель межрегионального баланса (Черниговский регион);

3) балансовые модели на уровне отдельных предприятий (матричные модели тех-пром-фин-плана).

Можно рассчитать исходя из вариантов:

1) Когда задается уровень валовой продукции, то рассчитываются все технологические коэффициенты по производящим и потребляющим отраслям.

2) Когда задается уровень конечной продукции (вектор), рассчитывается вектор валовой продукции и все технологические коэффициенты.

Тема 4. Оптимизационные ЭММ.

1.1. Особенности ЭММ оптимизации.

В условиях рыночных отношений, когда сырьевые ресурсы ограничены, возникает вопрос оптимизации прибыли, себестоимости и экономии ресурсов. Оптимизационные модели разного характера часто сводятся к задачам линейного программирования.

ЭММ оптимизации содержит одну целевую функцию, в которой показательной является эффективность производства, и систему ограничений, куда входят факторы, в области которых модель не теряет своей практической ценности. Система ограничений должна составляться корректно, при этом возможны 4 случая:

1) Ограничения модели несовместимы (модель не имеет неотрицательных решений).

2) Неотрицательные решения имеются, но максимум (минимум) целевой функции не ограничен (®¥). Условия ограничений выбраны неверно.

3) Оптимальное значение целевой функции представляет собой конечное число и достигается при единственном сочетании переменных системы ограничений.

4) Оптимальное значение целевой функции достигается при многих вариантах значений переменных системы ограничений (система ограничений не корректна). В линейных моделях число переменных х может иметь разные значения.

Если число х (видов продукции) больше числа независимых ограничений и задача имеет одно решение, то в оптимальном плане число х (видов продукции) будет не меньше числа ограничений. Остальные переменные х будут равны 0.

4.2. ЭММ оптимизации производственного плана отрасли.

Э

М

М

(13)

k – вид, номер производимой продукции;

l – число видов продукции;

s – вид выделяемых ресурсов;

m – число видов выделяемых ресурсов;

Rk – прибыль от реализации единицы продукции k вида;

Xk - объем (количество изделий) k вида;

вsk – норма потребления S вида ресурсов при производстве единицы k вида продукции;

Bs – объем выделяемых ресурсов S вида ;

hk , qk – верхняя и нижняя граница, соответствующая по производству k вида продукции.

4.3. ЭММ оптимизации выпуска продукции предприятиями отрасли.

Э

М

К-во Просмотров: 697
Бесплатно скачать Реферат: Экономико-математическое моделирование