Реферат: Электростатика

В соответствии с (7), поток вектора напряжённости сквозь сферическую поверхность радиуса R, охватывающую сферический заряд q, находившийся в её центре:

(Рисунок)

(10)

Этот результат справедлив для замкнутой поверхности любой формы. Рассмотрим общий случай для произвольной поверхности, окружающей n зарядов.

В соответствии с принципом суперпозиции . Поэтому

,

(11)

(11) – выражает теорему Гаусса для электростатического поля:

Поток вектора напряжённости электростатического поля в вакууме через произвольную замкнутую поверхность равен алгебраической сумме заключённых внутри этой поверхности зарядов, делённых на электрическую постоянную.

Если заряд распределён с объёмной плотностью , то

(12)

или (13)


Применение теоремы Гаусса к расчёту поля.

  1. Поле равномерно заряженной бесконечной плоскости с поверхностной плотностью заряда .

(Рисунок)

В качестве замкнутой поверхности возьмём цилиндр, ось которого перпендикулярна плоскости. Поток через боковые стенки цилиндра равен нулю, так как линии напряжённости перпендикулярны оси цилиндра и его образующей. Полный поток сквозь цилиндр равен сумме потоков через его основания .

Заряд внутри цилиндра согласно теореме Гаусса:

, откуда .

  1. Поле равномерно заряженной сферической поверхности.

(Рисунок)

Если r >R, то по теореме Гаусса получим:

, где, откуда .

Если < R, то замкнутая поверхность не содержит электрического заряда. Следовательно E = 0.


Дивергенция и ротор электростатического поля.

Заменяя по теореме Гаусса поверхностный интеграл объёмным, получим:

Подставив вместо его значение из (13), получим:

Интегралы равны, следовательно равны и подынтегральные выражения. Так получим теорему Гаусса для вектора напряжённости электростатического поля:

К-во Просмотров: 1292
Бесплатно скачать Реферат: Электростатика