Реферат: Интеграл и его свойства
Основной задачей дифференциального исчисления является нахождение производной f’( x) или дифференциала df= f’( x) dx функции f( x). В интегральном исчислении решается обратная задача. По заданной функции f( x ) требуется найти такую функцию F( x), что F’(х)= f( x) или dF( x)= F’( x) dx= f( x) dx.
Таким образом, основной задачей интегрального исчисления является восстановление функции F( x) по известной производной (дифференциалу) этой функции. Интегральное исчисление имеет многочисленные приложения в геометрии, механике, физике и технике. Оно дает общий метод нахождения площадей, объемов, центров тяжести и т. д..
Определение. Функция F( x), , называется первообразной для функции f( x) на множестве Х, если она дифференцируема для любого и F’( x)= f( x) или dF( x)= f( x) dx.
Теорема. Любая непрерывная на отрезке [ a; b] функция f( x) имеет на этом отрезке первообразную F(x).
Теорема. Если F1 ( x) и F2 ( x) – две различные первообразные одной и той же функции f( x) на множестве х , то они отличаются друг от друга постоянным слагаемым, т. е. F2 ( x)= F1 x)+ C, где С – постоянная .
- Неопределенный интеграл, его свойства.
Определение. Совокупность F( x)+ C всех первообразных функции f( x) на множестве Х называется неопределенным интегралом и обозначается:
- (1)
В формуле (1) f( x) dx называется подынтегральным выражением, f( x) – подынтегральной функцией, х – переменной интегрирования, а С – постоянной интегрирования.
Рассмотрим свойства неопределенного интеграла, вытекающие из его определения.
1. Производная из неопределенного интеграла равна подынтегральной функции, дифференциал неопределенного интеграла равен подынтегральному выражению:
и .
2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:
3. Постоянный множитель а (а≠0) можно выносить за знак неопределенного интеграла:
4. Неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от этих функций:
5. Если F( x) – первообразная функции f( x), то:
6 (инвариантность формул интегрирования). Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной:
где u – дифференцируемая функция.
- Таблица неопределенных интегралов.
Приведем основные правила интегрирования функций.
I.
II.
III.
IV.
V.
VI.
Приведем таблицу основных неопределенных интегралов. (Отметим, что здесь, как и в дифференциальном исчислении, буква u может обозначать как независимую переменную ( u= x) , так и функцию от независимой переменной ( u= u( x)) .)
1. ( n≠-1).
2. (a >0, a≠1).
3.
4.
5.
6.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--