Реферат: Исчисление высказываний
2.
p
p
1.
2.
1.
2.
1.
[p] [q]
r
Доказательство в исчислении высказываний есть по существу последовательность преобразований высказывания р с целью показать, что р общезначимо. Каждый шаг в доказательстве есть либо уже доказанное высказывание, либо высказывание, истинное по предположению и вводимое для последующих шагов. Каждый шаг , который является предположением, заключается в скобки [ ]. Все другие шаги должны быть доказаны. Последним шагом в доказательстве должно быть само высказывание р.
Докажем высказывание
[p]
p
Правило I
Первым шагом мы делаем предположение, что р - общезначима. Тогда второй шаг непосредственно следует из первого. Раз мы предположили общезначимость р на первом шаге, то мы используем этот факт на втором. На третьем шаге мы используем правила вывода I, которое устанавливает общезначимость высказывания .
Доказательство с помощью правил вывода гибче, чем доказательство с помощью таблицы истиности. В первом случае мы можем проанализировать каждый шаг в цепочке доказательства. В то же время, неограниченный рост таблицы истиности не позволят нам этого сделать.
Присмотревшись внимательно к правилам вывода, можно увидеть, что они хорошо согласуются с нашей интуицией. Например, возьмём правило VIII. Если на предыдущих шагах была доказана общезначимость высказываний p и q, то очевидно что высказывание - тоже общезначимо.
Итак, в дальнейшем при доказательстве мы будем использовать либо правила эквивалентности (в этом случае каждый шаг будет замещением правого вхождения в высказывании на левую часть правила) либо правила вывода.
5.2.4. Некоторые приёмы доказательства.
Дедуктивный вывод.