Реферат: Исследование движения центра масс межпланетных космических аппаратов
- предельная ошибка по скорости (3s) - 5 м/с.
Пересчитав ошибку по координате на ошибку по периоду выведения орбиты получим предельную ошибку по периоду DT - 10 сек.
Корреляционная матрица ошибок выведения на момент выведения составляет:
Члены, стоящие на главной диагонали представляют собой квадраты предельных ошибок - (3s)2 .
K11 = K22 = K33 = (3s)2 = 72 = 49 км.
K44 = K55 = K66 = (3s)2 = 52 = 25 м/с.
Остальные члены представляют собой вторые смешанные моменты Kij = Kji = rij si sj или Kij = Kji = rjj (3si )(3sj ), где rjj - коэффициенты связи величин i и j. В данном случае вторые смешанные моменты Kij = Kji = 0.
Кинематические параметры в геоцентрической экваториальной системе координат на момент выведения с учетом ошибок выведения:
t, сек | 4946.5 |
X, м | 6144262,9 |
Y, м | 3178846,1 |
Z, м | 696506,95 |
Vx , м/с | -206,3 |
Vy , м/с | -1252,03 |
Vz , м/с | 7477,65 |
l, ° | 28,1 |
Параметры орбиты с учетом ошибок выведения:
l, ° | 28,13 |
T, c | 5795,7 |
W, ° | 28,13 |
p, км | 6973,5 |
а, км | 6973,6 |
e | 0,00314 |
i, ° | 97,637 |
2.3.2. ЦЕЛИ РАБОТЫ
1) Исследование и моделирование движения ЦМ МКА при воздействии на КА возмущающих ускорений.
2) Разработка алгоритмов проведения коррекции траектории МКА, моделирования процесса, и расчет потребного топлива для проведения коррекции траектории.
3) Исследование динамики системы коррекции траектории при стабилизации углового положения в процессе проведения коррекции траектории МКА.
2.4. МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ЦЕНТРА МАСС МКА
2.4.1.УРАВНЕНИЕ ДВИЖЕНИЯ КА
Рассмотрим невозмущенное движение материальных точек М и m в некоторой инерциальной системе координат. Движение совершается под действием силы притяжения Fz . Сила Fz для материальной точки m определяется формулой:
,
где ¦ - постоянная притяжения,
ro - единичный вектор, направленный от М к m,
,
где - радиус-вектор, проведенный из т.М до т.m.
r - относительное расстояние от М до m.
На точку М действует сила Fz , равная по величине и направленная в противоположную сторону.
На основе второго закона Ньютона уравнения движения материальных точек М и m имеют вид:
(1), (2)
или
(3), (4)
где p1 - радиус-вектор, проведенный из начала инерциальной системы координат в точку m.