Реферат: Измерение магнитострикции ферромагнетика

f(0) му. = – [B2 1 /(C11 – C12 )][ 2/3 – 2 ∑ a2 i a2 j ] - B2 2 /C44 a2 i a2 j ,

(i , j=1,2,3, i>j) (22)

f(0) упр. = ½ C11 [B2 1 /(C11 – C12 )2 ] [ 2/3 – 2 ∑ a2 i a2 j ]+ ½ C44 B2 2 a2 i a2 j +

+C12 [B2 1 /(C11 – C12 )2 ] ∑ a2 i a2 j – 1/3 ,

(i , j=1,2,3,i>j) (23)

Подставляя (21) и (23) в (1) и учитывая (10), (18) и (19), получим следующее выражение для плотности анизотропной части магнитной энергии кристалла при отсутствии упругих внешних напряжений:

f =(K1 +∆K1 )∑a2 i a2 j (i , j=1,2,3, i>j) (24)

где добавка ∆K1 к первой константе анизотропии, обусловленная спонтанной магнитострикционной деформацией равна

K1 = [2B2 1 /(C11 – C12 )] + [B2 2 /C44 ] – [C11 {B2 1 /(C11 – C12 )2 }]+

+ [ ½ C44 (B2 2 /C2 44 )]+[ C12 {B2 1 /(C11 – C12 )2 ] =

= [B2 1 /(C11 – C12 )] – ½[B2 2 /C44 ]=9/4 l 2 100 (C11 -C12 ) – 9/2 l 2 111 C44

(25)

Как видно из (24), вид зависимости плотности энергии от направляющих косинусов не изменился, но константа анизотропии благодаря спонтанной деформации решетки увеличилась.

§2. Физическая природа естественной магнитной анизотропии.

В первых работах Акулова магнитное взаимодействие в ферромагнитных кристаллах с микроскопической точки зрения трактовалось чисто классическим путем. Квантовомеханическая трактовка была дана в работах Блоха и Джентиля . Классическую теорию температурной зависимости констант магнитной анизотропии развили Акулов и Зинер , исходя из представления о том, что около каждого узла решетки можно выделить области ближнего магнитного
порядка с не зависящими от температуры локальными константами анизотропии. Локальные мгновенные намагниченнос ти этих областей из-за теплового движения рас пределены хаотически и образуют среднюю намагниченнос ть всего кристалла. Отсюда удается определить связь между температурным ходом констант анизотропии и намагниченности в виде

Kn (T)/Kn (0) = [I s (T)/I s (0)]n(2n+1) , (26)

где n – порядок константы. Таким образом, мы приходимкуниверсальной зависимости K1I 3 s и K2I 10 s . Pезультат (26) получается в приближении теории молекулярного поля . Микроскопические трактовки этой проблемы даны в работах Ван - флека и Канамори .

В основе всех расчетов по микроскопической теории магнитной анизотропии лежит учет магнитного взаимодействия между спиновыми
и орбитальными магнитными моментами электронов, принимающих участие в ферромагнетизме. В общем случае оператор магнитной энергиискладывается из трех членов.

H магн. =U1 +U2 +U3 (27)

гдеU1 оператор, соответствующий движению электронов относительноионов решетки,— спин-орбитальная энергия;U2 оператор магнитнойэнергии, возникающей вследствие относительного движения самих электронов, —орбитальная энергия;U3 оператор энергии магнитноговзаимодействия спиновых магнитных моментов электронов — с пиноваяэнергия (в первом приближении имеет вид дипольного взаимодействия).

Эффект орбитального взаимодействияU1 иU2 проявляющий ся в случае изолированных атомов в образовании тонкой структуры спектральныхлиний приводит к появлению “внутренних магнитных полей” порядка105 э. С другой стороны, “эквивалентное магнитное поле” анизотропии ферромагнетиков, определяемое величиной поля, при котором достигается насыщение в монокристалле вдоль труднейших направлений намагничивания, оказ ывается порядка 102 э и лишь в редких случаях(Со, пирротин) достигает 103 —104 э. Объяснение этого несоответствия заключается в том, что в отличие от атомов, где орбитальные моменты отличныот нуля (за исключением s -состоянии ), в ферромагнитных кристаллах(например, в d-металлах и сплавах), как показывают измерения гиромагнитного эффекта, средний орбитальный магнитный момент по кристаллу почти всегда практически равен нулю. Поэтому в первом приближении эффект спин-орбитальных энергий U1 иU2 также равен нулю. Отличн ый от нуля эффект получается лишь во втором и более высоких приближениях.

Что же касается спиновой части магнитного взаимодействияU3 , которая хотя и дает отличный от нуля эффект в первом приближении, но темне менее не обеспечивает наблюдаемый на опыте порядок величины эффективных “полей” благодаря своей малости .

Несмотря на отсутствие законченной квантовой трактовки магнитного
взаимодействия в ферромагнетиках, в этой области имеются известные
успехи. Так, например, удалось объяс нить правильный порядок величины констант магнитной анизотропии. В частности, без всяких дополнительных соображений из теории следует, что в кубических кристаллах (Fe, Ni) константы анизотропии должны быть меньше по абсолютнойвеличине, чем в случае гексагональных кристаллов (Со, пирротин). Этовытекает из свойств симметрии ку бических кристаллов, в которых первоеприближение для дипольной энергииU3 и второе приближение для орбитальных энергийU1 иU2 не приводит к зависимости свободной энергиикристалла от ориентации его намагниченности относительно кристаллографических осей. Для получения этой зависимости н адо рассматриватьследующие приближения, в то время как в гексагональных решетках анизотропия получается и в первом приближении дляU3 , и во второмдля U1 иU2 .

Остановимся несколько подробнее на микромеханизме явления естественной кристаллографической магнитной анизотропии. Поскольку
в создании самопроизвольной намагниченности ферро- и антиферромагнетиков основную роль играю т электронные спины, то мик роскопическаяэнергия, ответственная за магнитную анизотропию, должна зависеть отсостояния этих спинов в кристалле, а также отражать симметрию распределения спиновой и зарядовой (орбитальной) плотности в кристалле. Наиболее простым является механизм магнитного дипольного взаимодействия спинов.

К сожалению, однако, учет лиш ь дипольного межэлектронного взаимодействия не может, как правило, объяснить наблюдаемую на опытевеличину энергии магнитной анизотропии.

Другой из упомянутых выше механизмов заключается в связи между
спином и орбитальным движением электронов [например, описываемой
членамиU1 иU2 гамильтониана (27)].

Киттель дает следующее наглядное объяснение физического механизма магнитной анизотропии из-за спин-орбитальной связи.
В основу своего объяснения они кладут общепризнанное положение, что, само появление этой анизотропии обусловлено совместным действием спин-орбитальной связи, частичного замораживания орбитальных моментов неоднородными кристаллическими полями и орбитальным обменным взаимодействием соседних атомов. Таким образом, самопроизвольная намагниченность кристалла “чувствует” ионную реш етку через орбитальное движение магнитных электронов. Спины, участвующие в намагниченности, взаимодействуют с орбитальным движением с помощью спин-орбитальной с вязи, а орбитальное движение связано с решеткой
полем лигандов .

Микроскопи чес кая энергия, воз никающая благодаря этому механизму, может быть в свою очередь двух типов:

1) спин-орбитальная связь, которая зависит от спиновых состояний
двух или более ионов-носителей магнитного момента (парная модель
магнитной анизотропии);

К-во Просмотров: 240
Бесплатно скачать Реферат: Измерение магнитострикции ферромагнетика