Реферат: Изучение основ комбинаторики и теории вероятностей

1.5.5. Теория информации...........................................................................................39

1.5.6. Теория графов.................................................................................................40

Глава 2. Методические разработки для элективного курса...................41

2.1. Анализ изложения темы в школьных учебниках............................41

2.2. Тематическое планирование..........................................................51

2.2.1. Введение.......................................................................................................51

2.2.2. Содержание программы спецкурса...........................................................55

2.2.3. Поурочное планирование...........................................................................56

2.3. Разработки занятий........................................................................58

2.4. Электронный учебник....................................................................93

Заключение..........................................................................................96

Список использованной литературы.....................................................97

Введение

Область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или иным условиям, можно составить из заданных объектов называется комбинаторикой .

Комбинаторика возникла в XVI веке. Вопросы, касающиеся азартных игр, явились движущей силой в ее развитии. Комбинаторика является разделом дискретной математики, ориен­тированным на решение задач выбора и расположения элементов неко­торого множества в соответствии с заданными правилами и ограниче­ниями. Каждое такое правило определяет способ построения некоторой комбинаторной конфигурации, поэтому комбинаторный анализ (комби­наторика) занимается изучением свойств комбинаторных конфигураций, условиями их существования, алгоритмами построения и оптимизацией этих алгоритмов.

Этот раздел математики тесно связан с рядом других разделов дис­кретной математики: теорией вероятностей, теорией графов, теорией чисел, теорией групп и т. д.

Комбинаторика, пройдя многовековой путь развития, обретя собственные методы исследования, с одной стороны, широко используется при решении задач алгебры, геометрии, анализа, с другой стороны, сама использует геометрические, аналитические и алгебраические методы исследования.

Сейчас комбинаторные методы применяются как в самой математике, так и вне её – теория кодирования, планирование эксперимента, топология, конечная алгебра, математическая логика, теория игр, кристаллография, биология, статистическая физика, экономика и т.д.

В школьном курсе комбинаторика преподается в совокупности с теорией вероятностей и статистикой. В течение последних десятилетий элементы теории вероятностей и комбинаторики то вводились разделом в курс математики общеобразовательной школы, то исключались вообще. Внимание, которое уделяется этому учебному предмету во всем мире, позволяет предположить, что концепция его введения является актуальной .

В настоящее время никто не подвергает сомнению необходимость включения вероятностно-статистической линии в школьный курс математики. О необходимости изучения в школе элементов комбинаторики, теории вероятностей и статистики речь идет очень давно. Ведь именно изучение и осмысление комбинаторики, теории вероятностей и статистических проблем особенно нужно в нашем перенасыщенном информацией мире.

Но внедрение вероятностно-статистической линии в школьный курс столкнулось с некоторыми трудностями, в первую очередь, это методическая неподготовленность учителей и отсутствие единой методики и школьных учебников.

Современная концепция школьного математического образования ориентирована, прежде всего, на учет индивидуальности ребенка, его интересов и склонностей. Этим определяются критерии отбора содержания, разработка и внедрение новых, интерактивных методик преподавания, изменения в требованиях к математической подготовке ученика. И с этой точки зрения, когда речь идет не только об обучении математике, но и формировании личности с помощью математики, необходимость развития у всех школьников вероятностной интуиции и статистического мышления становится насущной задачей. Причем речь сегодня идет об изучении вероятностно-статистического материала в обязательном основном школьном курсе «математике для всех» в рамках самостоятельной содержательно-методической линии на протяжении всех лет обучения.

Согласно данным ученых-физиологов и психологов в среднем звене школы заметно падение интереса к процессу обучения в целом и к математике в частности. На уроке математики в основной школе, в пятых-девятых классах, проводимых по привычной схеме и на традиционном материале, у ученика зачастую создается ощущение непроницаемой стены между изучаемыми объектами и окружающим миром. Именно вероятностно-статистическая линия, изучение которой невозможно без опоры на процессы, наблюдаемые в окружающем мире, на реальный жизненный опыт ребенка, способна содействовать возвращению интереса к самому предмету «математика», пропаганде его значимости и универсальности.

Знакомство школьников с очень своеобразной областью математики, где между однозначными «да» и «нет» существует еще и «быть может» (причем это «может быть» поддается строгой количественной оценке), способствует устранению укоренившегося ощущения, что происходящее на уроке математики никак не связано с окружающим миром, с повседневной жизнью. Учащиеся видят непосредственную связь математики с окружающей действительностью, реальной жизнью.

В большинстве учебников комбинаторные формулы рассматривается лишь как средство для подсчета вероятности, это сказывается на содержании этого материала в учебниках, и места его изучения. Но комбинаторика ставит и другие цели: в первую очередь – это развитие мышления, и использование комбинаторных знаний для решения задач прикладного характера.

Цель дипломной работы : на основе изучения школьной литературы и имеющегося материала, разработать элективный курс по «Основам комбинаторики и теории вероятностей» для старших классов физико-математического профиля.

Исходя из этого можно выделить следующие задачи , реализация которых позволяет достичь поставленную цель:

· Необходимо определить содержание материала по каждому из направлений: комбинаторика, статистика, теория вероятностей.

· Проанализировать связи между этими направлениями и определить последовательность или параллельность их изучения.

К-во Просмотров: 496
Бесплатно скачать Реферат: Изучение основ комбинаторики и теории вероятностей