Реферат: Изучение основ комбинаторики и теории вероятностей

Для реализации данных задач используются следующие средства :

· Изучение школьных учебников и методической литературы по данной теме.

· Изучение стандартов образования по данной теме.

· Анализ школьной литературы.

Дипломная работа состоит из двух частей, это как теоретическая часть, так и

методические разработки элективного курса.

В теоретической части рассматриваются такие основные элементы клас­сической комбинаторики как, размещения, перестановки и сочетания, а так же рассматриваются некоторые классы наи­более часто встречающихся задач: комбинаторные задачи с ограниче­ниями, комбинаторные задачи раскладок и разбиений, комбинаторные задачи, решаемые с помощью рекуррентных соотношений.

Во второй главе представлен анализ изложения данной темы в школьных учебниках и дополнительной школьной литературе, а так же поурочное планирование на два полугодия для 10 – 11 класса физико-математического профиля (32 часов) с разработанными конспектами к теме данного диплома – «Комбинаторика».


Глава 1. Теоретическая часть

1.1. Историческая справка

Разрозненные комбинаторные задачи человечество решало с незапамятных времён. К концу XVI века накопились знания, относящиеся к:

1. свойствам фигурных чисел,

2. построению магических (и иных числовых) квадратов,

3. свойствам биномиальных коэффициентов.

Термин "комбинаторика" был введён в математический обиход знаменитым Лейбницем.Готфрид Вильгельм Лейбниц (1.07.1646 - 14.11.1716) - всемирно известный немецкий учёный, занимался философией, математикой, физикой, организовал Берлинскую академию наук и стал её первым президентом. В математике он вместе с И. Ньютоном разделяет честь создателя дифференциального и интегрального исчислений. В 1666 году Лейбниц опубликовал "Рассуждения о комбинаторном искусстве". В своём сочинении Лейбниц, вводя специальные символы, термины для подмножеств и операций над ними находит все k -сочетания из n элементов, выводит свойства сочетаний:

,

,

,

- строит таблицы сочетаний до n = k = 12 , после чего рассуждает о приложениях комбинаторики к логике, арифметике, к проблемам стихосложения и др.

В течение всей своей жизни Лейбниц многократно возвращался к идеям комбинаторного искусства. Комбинаторику он понимал весьма широко, именно, как составляющую любого исследования, любого творческого акта, предполагающего сначала анализ (расчленение целого на части), а затем синтез (соединение частей в целое). Мечтой Лейбница, оставшейся, увы, неосуществлённой, оставалось построение общей комбинаторной теории. Комбинаторике Лейбниц предрекал блестящее будущее, широкое применение.

В XVIII веке к решению комбинаторных задач обращались выдающиеся математики. Так, Леонард Эйлер рассматривал задачи о разбиении чисел, о паросочетаниях, о циклических расстановках, о построении магических и латинских квадратов.

В 1713 году было опубликовано сочинение Я. Бернулли "Искусство предположений", в котором с достаточной полнотой были изложены известные к тому времени комбинаторные факты. "Искусство предположений" появилось после смерти автора и не было автором завершено. Сочинение состояло из 4 частей, комбинаторике была посвящена вторая часть, в которой содержатся формулы:

· для числа перестановок из n элементов,

· для числа сочетаний (называемого Я. Бернулли классовым числом) без повторений и с повторениями,

· для числа размещений с повторениями и без повторений.

Для вывода формул автор использовал наиболее простые и наглядные методы, сопровождая их многочисленными таблицами и примерами. Сочинение Я. Бернулли превзошло работы его предшественников и современников систематичностью, простотой методов, строгостью изложения и в течение XVIII века пользовалось известностью не только как серьёзного научного трактата, но и как учебно-справочного издания. В работах Я. Бернулли и Лейбница тщательно изучены свойства сочетаний, размещений, перестановок. Перечисленные комбинаторные объекты относятся к основным комбинаторным конфигурациям . В математике в XIX веке появился сначала термин "геометрическая конфигурация" в лекциях по проективной геометрии профессора университета в Страсбурге К.Т. Рейе (1882).

Термин "тактика" ввёл в математику английский математик Джеймс Джозеф Сильвестр (1814-1897) в 1861 году. Сильвестр определял тактику как раздел математики, изучающий расположение элементов друг относительно друга. В сфере этого раздела находится, по мнению Сильвестра, теория групп, комбинаторный анализ и теория чисел. Мысли Сильвестра о тактике разделял его друг Артур Кэли.

К-во Просмотров: 494
Бесплатно скачать Реферат: Изучение основ комбинаторики и теории вероятностей