Реферат: Каналы связи
– условную дифференциальную энтропию;
– количество информации в одном непрерывном отсчете процесса Y ( t ) относительно отсчетаX ( t ) ;
– скорость передачи информации по непрерывному каналу с дискретным временем;
– пропускную способность непрерывного канала связи;
– определить емкость канала связи, если время его работы T = 10 м ;
– определить количество информации, которое может быть передано за 10 минут работы канала;
– показать, что информационная емкость непрерывного канала без памяти с аддитивным гауссовым шумом при ограничении на пиковую мощность не больше информационной емкости такого же канала при той же величине ограничения на среднюю мощность.
Решение:
Дифференциальная энтропия входного сигнала
= 3,05 бит/отсчет.
Дифференциальная энтропия выходного сигнала
=3,21 бит/отсчет.
Условная дифференциальная энтропия
= 2,05 бит/отсчет.
Количество информации в одном непрерывном отсчете процесса Y ( t ) относительно отсчета X ( t ) определяется по формуле
I ( X , Y ) = h ( x ) – h ( x / y ) = h ( y ) – h ( y / x ) = 3,21–2,05 = 1,16 бит/отсчет.
Скорость передачи информации по непрерывному каналу с дискретным временем определяется по формуле
=
= 2 × 103 × [3,21–2,05] = 2320 бит/с
Пропускная способность непрерывного канала с помехами определяется по формуле
=2322 бит/с.
Докажем, что информационная емкость непрерывного канала без памяти с аддитивным гауссовым шумом при ограничении на пиковую мощность не больше информационной емкости такого же канала при той же величине ограничения на среднюю мощность.
Математическое ожидание для симметричного равномерного распределения
Средний квадрат для симметричного равномерного распределения
Дисперсия для симметричного равномерного распределения