Реферат: Химия платины и ее соединений

Получают ее выпариванием растворов продуктов взаимодейст­вия PtCl4 с соляной кислотой или растворения платины в царской водке.

3Pt + 18HCl + 4HNO3 = 3H2[PtCl6] + 4NO + 8H2O

Исходя из Н2[РtС16] можно перейти практически к любому другому соединению платины. Уже приведены реакции получения из Н2[РtС16] таких веществ, как PtCl4, PtCI2, металлической платины и др. Интересный процесс протекает при кипячении раствора Н2[РtС16] со щелочью. При этом образуется гексагидроксоплатинат щелочного металла:

Н2[РtС16] + 8КОН = K2[Pt(OH)6] + 6КС1 + 2Н2O

Затем подкислением раствора K2[Pt(OH)6] минеральной кисло­той можно получить белый осадок гексагидроксоплатиновой кислоты:

[Pt(OH)e]2- + 2Н+ = H2[Pt(OH)6]

В этом соединении соседствуют протоны и ионы гидроксила, но реакции нейтрализации не происходит — настолько прочно связывает Pt(IV) лиганды — ионы ОН-, находящиеся во внутренней координа­ционной сфере. Здесь важнее всего не термодинамическая, а кинети­ческая устойчивость соединений платины.

Аммонийную соль (NH4)2PtCl6 используют для выделения плати­ны из растворов при ее переработке, поскольку дальнейший термолиз этой соли приводит к получению металлической платины (в виде мелкодисперсного черного порошка с сильно развитой поверхностью — так называемой платиновой черни):

(NH4)2PtCl6 = Pt + 2Cl2 + 2NH4Cl

Помимо [PtX6]2- (X = Cl-, Br-, I-, CN-, NCS-, ОН-) известны много­численные анионные комплексы с разнородными лигандами, напри­мер, ряда: М2[Рt(ОН)6], M2[Рt(ОН)5С1], M2[Pt(OH)4Cl2], М2[Рt(ОН)3С13], M2[Pt(OH)2Cl4], M2[Pt(OH)Cl5], М2[РtC16]. Некоторые из платинат (IV)-комплексов этого ряда могут быть получены при гидролизе PtCl4:

PtCl4 + 2НОН = H2[Pt(OH)2Cl4]

или действием щелочей на хлороплатинаты (IV):

Na2[PtCl6] + 6NaOH = Na2[Pt(OH)6] + 6NaCl

О разнообразии комплексов Pt (IV) можно судить также по следующему ряду производных: [Рt(NН3)6]С14, [Pt(NH3)5Cl]Cl3, [Pt(NH3)4Cl2]Cl2, [Рt(NH3)3С13]С1, [Рt(NН3)2С14], K[Pt(NH3)Cl5], К2[РtС16].

Характер координации хлорид-иона в этих соединениях можно легко установить химическим путем. Так, при взаимодействии растворов [Рt(NН3)6]Сl4 и AgNO3 осаждаются 4 моль AgCl в расчете на 1 моль Pt. Из растворов [Рt(NН3)5С1]С13 и [Рt(NН3)4С12]С12 выделяются соответственно 3 и 2 моль AgCl, а из раствора [Рt(NН3)2С14] хлорид серебра осаждается только в результате долгого стояния раствора при нагревании. В соответствии с харак­тером ионизации меняется и электрическая проводимость растворов. Понятно, что при одинаковой молярной концентрации максимальной электрической проводимостью обладает раствор [Pt(NH3)6]Cl4, минимальной — раствор [Pt(NH3)2Cl4] (рис. 3).

Для соединений состава [Pt(NH3)4Cl2]Cl2 и [Pt(NH3)2Cl4] характерна геометрическая изомерия: цuc-[Pt(NH3)2Cl4] имеет оранжевую, а транс-[Pt(NH3)2Cl4] — желтую окраску. Расположение транс-комплексов [Pt(NH3)2Cl4] в кристалле показано на рис. 4.




Рис. 3. Молярная электрическая проводи­мость соединений Pt (IV) в зависимости от их состава


Р и с. 4. Строение крис­талла [Pt(NH3)2Cl4]


Соединения Pt (VI)

Все изученные окислы платины термически неустойчивы, но оче­видно, что чем выше проявляемая платиной в окислах степень окисле­ния, тем сильнее выражен кислотный характер окисла. Так, при элект­ролизе щелочных растворов с использованием Pt-электродов на ано­де получается трехокись РtO3, которая с КОН дает платинат состава К2О*ЗPtO3, что доказывает способность платины (VI) проявлять кис­лотные свойства.

Платина, подобно ряду других 5d-элементов, образует гексафторид PtF6. Это летучее кристаллическое вещество (т. пл. 61° С, т. кип. 69° С) темно-красного цвета, получают его сжиганием платины во фторе.

Pt4+ + 4F- = PtF4 , PtF4 + F2 = PtF6 .

Изучение свойств гексафторида платины — летучего вещества, образующего красно-коричневые пары, — привело к важным послед­ствиям в развитии неорганической химии. В 1960 г. Бартлетту, рабо­тавшему в Ванкувере (Канада), удалось показать, что PtF6 может от­щеплять фтор с образованием пентафторида, который затем диспропорционирует:

PtF6 = PtF5 + 0,5F2, 2PtF5 = PtF6+PtF4.

Побочным результатом этих опытов было обнаружение на стен­ках реакционного сосуда коричневого налета, оказавшегося оксигенильным производным шестифтористой платины:

PtF6 + O2 = [O2]+[PtF6]-

Образование этого соединения доказывало, что PtF6 является сильнейшим окислителем, способным оторвать электрон от молеку­лярного кислорода. Это наблюдение затем привело Бартлетта к мыс­ли о возможности окислить шестифтористой платиной атомарный ксе­нон, что положило начало химии фторидных и кислородных соедине­ний инертных газов.

Важно отметить, что PtF6 — сильнейший окислитель, по-видимо­му превосходящий по окислительному действию молекулярный фтор. Устойчивость гексафторидов уменьшается в ряду WF6 > ReF6 > OsF6 > IrF6 > PtF6 >. Особо неустойчивый PtF6 относится к числу наиболее сильных окислителей (сродство к электрону 7 эВ), является фторирующим агентом. Так, он легко фторирует ВгF3 до BrF5, бурно реагирует с металлическим ураном, образуя UF6. Это можно объяснить тем, что связь Pt—F в PtF6 менее прочна, чем связь F—F в f2. Это делает PtFe источником атомарного фтора — вероятно, самого сильного из существующих химических окислителей действующих при более мягких условиях (при более низкой темпера­туре), чем fs и многие другие фторокислители.

К-во Просмотров: 405
Бесплатно скачать Реферат: Химия платины и ее соединений