Реферат: Комп ютерна графіка 2

Вихідні дані: xc , yc - координати центра спряжувальноЇ дуги; tп — кутовий параметр початкової точки спряжувальної дуги; tд — кутовий параметр спряжуваль­ної дуги.

Обчислення міжцентрової відстані:

(1.46)

Нехай

. (1.47)

Перевірка сумісності умов. Задача має роз­в'язок, якщо:

, (1.48)

або

, (1.49)

або

(1.50)

або

(1.51)

За допомогою алгоритму визначення координат точок перетину двох кіл, радіу­си яких ||R|-R1 | тa ||R|-R2 | (див. коло), знаходять у локальній системі з по­чатком у О1 та віссю О'х', що збігається з 0102 (рис. 1.12),

(1.52)

Координати точки контакту спряжувального кола з першим колом:

(1.53)

Координати точки спряження з другим колом:

(1.54)

Співвідношення (1.53) та (1.54) діста­ли з розрахунку подібних трикутників.

Визначення компонент повороту локаль­ної системи x'О’у’ відносно глобальної xOy :

. (1.55)

Рис.1.12


Обчислення глобальних координат цен­тра спряжувального кола та координати точок спряження за формулами :

(1.56)

Обчислення кутового параметра точок спряження відносно центра спряжувально­го кола:

. (1.55)

Ви'значення кутового параметра спряжувальної дуги:

. (1.58)

Якщо k = 0 і |t| > п або k = 1 і |t[ < л, то

.

Екстремальні випадки задачі спряження

Під екстремальними розуміють випадки. коли деякі вхідні дані досягають екстре­мальних значень. Так, наведений вище ал­горитм повною мірою можна застосовува­ти в екстремальних випадках, коли R1 = О або R2= 0. При цьому задача зводиться до знаходження кола заданого радіуса, яке проходить через фіксовану точку та доти­кається до другого кола. Цей алгоритм за­стосовують також тоді, коли одночасно R1= О та R2=0. Тут йдеться про знаходжен­ня кола заданого радіуса, яке проходить че­рез дві фіксовані точки.

Випадок, коли радіус спряжувального кола дорівнює нулю, тривіальний. Розгля­дуваний алгоритм до формуй (1.52) включ­но збігається з алгоритмом знаходження координат точок перетину двох кіл, а форму­ли (1.53)...(1.58) втрачають зміст.

Розглянемо випадки, коли радіус спря­жувального кола R досягає екстремальних значень, що дістанемо виразів (1.47) ... (1.51) при зміні в них знаків нерівності на знаки рівності, тобто R = А та R = В. Тут радіус спряжувaльного кола перетво­рюється в залежну величину, яка не може входити у вхідні дані.

Знаходження координат центра спряжувальиого кола, що грунтувалaся на алго­ритмі визначення координат точок перети­ну двох кіл, також не може бути здійснений у такому вигляді через перетворення пере­тину до дотику. Комп'ютерний розв'язок у цьому екстремальному випадку привів би до визначення комп'ютерного нуля, що, в свою чергу, призвело б до значних ускладнень програми. У зв'язку з цим наведений екст­ремальний випадок вимагає окремого алгоритму та суттєвих змін навіть при форму­люванні задачі, а саме: знайти коло екстре­мально дотичне до двох заданих кіл.

Неважко показати, що центр шуканого кола та точки його спряження з заданими колами лежать на лінії їхніх центрів. Тому, не змінюючи умови формалізації щодо знаків R1та R2, накладемо нову умову на коефіцієнт k: при k = 1 спряжувальна дуга розміщена зліва, а при k = -1 справа від вектора .

Нарешті, варіант екстремального зна­чення радіуса спряжувального кола формaлізуємо за допомогою коефіцієнта р, при р == 1 маємо R = А,

а при р = -1 — R = В.

Алгоритми нерухомого та рухомого екранів

Екранування ефективно застосовують в алгоритмах визначення видимості, коли одні елементи об'єкта закривають (єкранують) собою інші при проекційному відоб­раженні. Екранування грунтується на ал­горитмі визначення належності точки до півплощини чи внутрішності замкненого багатокутника.

Екранування замкненим багатокутником (нерухомим екраном) . Нехай n-кутник за­дано масивами координат його вершин xi , yi , (i = 1.2. .... m) так, що вершини впоряд­ковані в напрямі проти руxу стрілки годин­ника, а x1 = xm , y1 = уm . Щоб визначити на­лежність точки M (Xо, Yо) до внутрішності n-кутника, обчислимо суму кутів між суміж­ними променями, що сполучають точку М з вершинами n-кутннка. Маємо

(1.76)

Цю формулу дістали, застосувавши фор­мулу площі трикутника з вершинами (х0,у0), (хі,уі), (хі+1,уі+1), а саме:

(1.77)

де знак "+" відповідаг впорядкуванню вер­шин у напрямі проти руху стрілки годин­ника.

Рухомий екран . Оскільки основним при­мітивом комп'ютерної графіки є підрізок, а криві лінії інтерполюються ламаними, то криві лінії є основними у задачах комп'ю­терного відображення як гранних, так і кривих поверхонь.

К-во Просмотров: 341
Бесплатно скачать Реферат: Комп ютерна графіка 2