Реферат: Конспект по дискретной математики

Возьмем произвольное число 0,b1 ,b2 ,b3

1
b1 ¹a11 , b2 ¹a22 , ?

Эта дробь не может выйти в последовательность т.к. отличается от всех чисел, значит нельзя пронумеровать числа на отрезке [0;1].

Множество нечетно и называется континуальным, а его мощность континуум.

Метод, используемый при доказательстве, называется диагональным методом Кантора.

Отношение

Пусть дано RÍMn – n местное отношение на множество М.

Будем изучать двухместные или бинарные отношения. Если а и b находятся в отношении R, то записывается а Rb.

Проведем отношение на множество N:

А) отношение £ выполняется для пар (7,9) (7,7_

Б) (9,7) не выполняется.

Пример отношения на множество R

А) отношение находится на одинаковом расстоянии от начала координат выполняется для пар (3; 4) и (2; Ö21)

Б) (3; 4) и (1; 6) не выполняется.

Для задания бинарных отношений можно использовать любые способы задания множеств.

Для конечных множеств используют матричный способ задания множеств.

Матрица бинарного отношения на множество M={1;2;3;4}, тогда матрица отношения С равна

С=

1 2 3 4
1 1 1 1 1
2 0 1 1 1
3 0 0 1 1
4 0 0 0 1

101

010

001

С=

Отношение Е заданные единичной матрицей называется отношением равенства.

Отношением назовется обратным к отношением R, если aj Rai тогда и только тогда, когда aj Rai обозначают R-1 .

Свойства отношений

    Если aRa ==> очн. рефлексивное и матрица содержит на главной диагонали единицу

если ни для какого а не … ==> отношение антирефлексивное

главная диагональ содержит нули

Пр. отношнний

£рефлексивное

< антирефлексивное

К-во Просмотров: 574
Бесплатно скачать Реферат: Конспект по дискретной математики