Реферат: Конспект по дискретной математики
сумм Cij =Cji . Если из aRb и bRa следует a=b ==> отношение R – антисимметричное.
Пр. Если а £b и b£a ==> a=b
- Если дано "a,b,c из aRb и aRc следует aRC ==> отношение называемое транзитивным.
- Отношение называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.
Пр. отношение равенства E
5. Отношение называется отношением нестрогого порядка, если оно рефлексивно,
антисимметрично и транзитивно. Отношение называется отношением строгого порядка,
если оно антирефлексивно, антисимметрично и транзитивно.
Пр. а) отношение £u³ для чисел отношение нестрогого
б) отношение < u > для чисел отношение строгого
Лекция: Элементы общей алгебры
Р. Операции на множествах
Множество М вместе с заданной на нем совокупностью операций W = {j1 ,…, jm }, т.е. система А = {М1 ;j1 ,…, jm } называется алгеброй. W - сигнатура.
Если M1 ÌM и если значения j( M1 ), т.е. замкнуто ==> A1= {М1 ;j1 ,…, jm } подалгебра A.
Пр. 1. Алгебра (R;+;*) – называется полем действительных чисел обе операции бинарные и
поэтому тип этой алгебры (2;2)
- B=(Б;È;Ç) – булева алгебра. тип операций (2;2;1)
Р. Свойства бинарных алгебраических операций
запись ajb.
1. (ajb)jc=aj(bjc) – ассоциативная операция
Пр. +,x – сложение и умножения чисел ассоциативно
2. ajb = bja – коммутативная операция
Пр. +,x – коммутат.
–; : – некоммут.
умножение мат A×B¹B×A – некоммутативно.
3. aj(bjc) = (ajb) j(ajc) –дистрибутивность слева
(ajb)jc) = (ajс) j(bjc) –дистрибутивность справа.
Пр. (ab)e =ae be – возведение в степень дистрибутивного отношения произведения справа
но не abc ¹ ab ac
Р. Гомоморфизм и изоморфизм
Алгебры с разными членами имеют различные строения. Алгебры с одинаковыми членами имеют сходство. Пусть даны две алгебры A=(K; jI ) и B=(M; jI ) – одинакового типа.
Пусть отображение Г:K-M при условии Г(jI )= jI (Г), (1) т.е. результат не зависит от последовательности возможных операций: Или сначала вып. операции jI b А и затем отображении Г, или сначала отображение Г, или сначала отображение Г и затем отображение jI в В.