Реферат: Кривые второго порядка
Пусть
(13)
(13) – каноническое уравнение гиперболы с центром в начале координат. Соответственно, уравнение
– каноническое уравнение гиперболы с центром в точке
Числа a и b называются соответственно действительной и мнимой полуосями гиперболы. Гипербола с равными полуосями (a = b ) называется равносторонней, ее каноническое уравнение имеет вид:
Точки называются вершинами гиперболы.
Заметим, что если уравнение гиперболы имеет вид
(14)
то фокусы гиперболы находятся на оси Оу , а ветви гиперболы будут направлены не влево и вправо, а вверх и вниз.
Так как , то (15)
Как и в случае с эллипсом, эксцентриситетом гиперболы называется отношение межфокусного расстояния к длине действительной оси :
(16)
Следовательно,
Выразим фокальные радиусы точки через эксцентриситет. Из (12)
(17)
Прямые называются директрисами гиперболы.
– левая директриса,
– правая директриса.
Директрисы гиперболы обладают тем же свойством, что и директрисы эллипса
(18)
т. е. отношение расстояния от любой точки гиперболы до фокуса к расстоянию от нее до соответствующей директрисы есть величина постоянная, равная эксцентриситету гиперболы.
Для гиперболы важную роль играют также прямые
(19)
которые являются ее асимптотами , т. е. прямыми к которым график гиперболы неограниченно близко приближается, но не пересекает их. Заметим, что асимптоты гиперболы совпадают с диагоналями прямоугольника (если их продолжить)
Следует отметить, что если уравнение гиперболы имеет вид (14), т. е. ее фокусы находятся на оси Оу , то изменятся формулы для вычисления фокальных радиусов, эксцентриситета, директрис. Так – эксцентриситет, – уравнения директрис.
3 Парабола