Реферат: Лекции по Линейной алгебре
В любой группе G нормальными будут , во первых, тривиальная подгруппа и, во вторых, вся группа G. Если других нормальных подгрупп нет, то G называется простой.
В рассмотренной выше группе подгруппа
не является нормальной так как левые и правые смежные классы не совпадают. Сопряженными с H будут подгруппы
и
.
Если - любая подгруппа, то ее централизатор Z = Z(H,G) - нормальная подгруппа в G , так как для всех ее элементов z
. В частности, центр Z(G) любой группы G -нормальная подгруппа.
Подгруппа H индекса 2 нормальна. В самом деле, имеем 2 смежных класса : H и Hg = G-H = gH.
Теорема (свойство смежных классов по нормальной подгруппе).
Если подгруппа H нормальна в G, то множество всевозможных произведений элементов из двух каких либо смежных классов по этой подгруппе снова будет одним из смежных классов, то есть .
Доказательство.
Очевидно, что для любой подгруппы H .Но тогда
=
=
=
.
Таким образом, в случае нормальной подгруппы H определена алгебраическая операция на множестве смежных классов. Эта операция ассоциативна поскольку происходит из ассоциативного умножения в группе G. Нейтральным элементом для этой операции является смежный класс . Поскольку
, всякий смежный класс имеет обратный. Все это означает, что относительно этой операции множество всех (левых или правых) смежных классов по нормальной подгруппе является группой. Она называется факторгруппой группы G по H и обозначается G/H. Ее порядок равен индексу подгруппы H в G.
Абстрактная теория групп
(продолжение)
9 Гомоморфизм.
Гомоморфизм групп - это естественное обобщение понятия изоморфизма.
Определение.
Отображение групп называется гомоморфизмом, если оно сохраняет алгебраическую операцию, то есть
:
.
Таким образом, обобщение состоит в том, что вместо взаимно однозначных отображений, которые участвуют в определении изоморфизма, здесь допускаются любые отображения.
Примеры.
-
Разумеется, всякий изоморфизм является гомоморфизмом.
-
Тривиальное отображение
является гомоморфизмом.
-
Если
- любая подгруппа, то отображение вложения
будет инъективным гомоморфизмом.
-
Пусть
- нормальная подгруппа. Отображение
группы G на факторгруппу G/H будет гомоморфизмом поскольку
. Этот сюръективный гомоморфизм называется естественным.
-
По теореме С предыдущего раздела отображение сопряжения
сохраняет операцию и, следовательно является гомоморфизмом.
-
Отображение
, которое каждому перемещению
n- мерного пространства ставит в соответствие ортогональный оператор
(см. лекцию №3) является гомоморфизмом поскольку по теореме 4 той же лекции
.
Теорема (свойства гомоморфизма)
Пусть - гомоморфизм групп,
и
- подгруппы. Тогда:
-
,
.
-
- подгруппа.
-
-подгруппа, причем нормальная, если таковой была
.