Реферат: Лекции по Математике 2
( – 6 ) + ( + 9 ) = 3 ;
( – 6 ) + ( + 3 ) = – 3 .
Вычитание. Можно заменить вычитание двух чисел сложением, при этом уменьшаемое сохраняет свой знак, а вычитаемое берётся с обратным знаком.
П р и м е р ы :
( + 8 ) – ( + 5 ) = ( + 8 ) + ( – 5 ) = 3;
( + 8 ) – ( – 5 ) = ( + 8 ) + ( + 5 ) = 13;
( – 8 ) – ( – 5 ) = ( – 8 ) + ( + 5 ) = – 3;
( – 8 ) – ( + 5 ) = ( – 8 ) + ( – 5 ) = – 13;
Умножение. При умножении двух чисел их абсолютные величины умножаются, а произведение принимает знак « + » , если знаки сомножителей одинаковы, и знак « – » , если знаки сомножителей разные.
Полезна следующая схема (правила знаков при умножении):
+ · + = +
+ · – = –
– · + = –
– · – = +
При умножении нескольких чисел ( двух и более ) произведение имеет знак « + » , если число отрицательных сомножителей чётно, и знак « – » , если их число нечётно.
П р и м е р :
Деление. При делении двух чисел абсолютная величина делимого делится на абсолютную величину делителя, а частное принимает знак « + » , если знаки делимого и делителя одинаковы, и знак « – » , если знаки делимого и делителя разные.
Здесь действуют те же правила знаков, что и при умножении:
+ : + = +
+ : – = –
– : + = –
– : – = +
П р и м е р : ( – 12 ) : ( + 4 ) = – 3 .
Одночлены и многочлены
Одночлен. Коэффициент. Числовой множитель. Подобные одночлены.
Степень одночлена. Сложение одночленов. Приведение подобных членов.
Вынесение за скобки. Умножение одночленов. Деление одночленов.
Многочлен. Степень многочлена. Умножение сумм и многочленов.