Реферат: Линейная Алгебра. Теория групп

2 8 40 Пример непр. многочлена ст. 3

3 18 150 Пример непр. многочлена ст. 4


Можно также указать способ вычисления числа . Обозначим через , набор всех неприводимых унитарных многочленов степени n над полем GF(q), а через , набор всех вообще унитарных многочленов степени n над тем же полем. Рассмотрим следующее выражение:

(Здесь и далее автор использует сокращенные обозначения. Настоятельно советуем читателю для большей наглядности использовать развернутую запись.) F =. Здесь количество слагаемых в каждой скобке и

количество самих скобок выбрано таким образом, чтобы степень каждого многочлена, входящего в F была не выше n. Если раскрыть все скобки то получится сумма всевозможных выражений вида: , где m - степень выписанного многочлена и все . Соберем вместе в сумму все слагаемые с данным значением m. Полученная сумма при mn представляет собой в точности сумму всех вообще унитарных многочленов степени m поскольку каждый такой многочлен однозначно представим в виде произведения неприводимых : . Таким образом, F = +..., где точки отвечают слагаемым, в которых многочлены имеют степень выше n. Положим теперь для всех i и m. Тогда и все , так что получаем: F= = .

Применяя формулы для суммы геометрической прогрессии, находим:

F = = 1/(1-tq). Логарифмируя, затем дифференцируя это равенство и умножая результат на t, получаем: = . Коэффициент при в правой части равен . Соответствующий коэффициент в левой части равен сумме слагаемых вида m, причем встречаются только те слагаемые, для которых N кратно m. Итак, имеем:

. Отсюда непосредственно находим: , , , и так далее.

Следствие. Над конечным полем существуют неприводимые многочлены любой степени.

В самом деле, поскольку по определению , из доказанной формулы следует, что . Снова из той же формулы получаем: = .

Замечание.

Из приведенных рассуждений вытекает, что при эквивалентно . Таким образом, примерно 1/N часть всех многочленов степени N над полем из q элементов неприводима.


Лекция№11


Характеристика поля; автоморфизм Фробениуса.


Пусть k - произвольное поле, его единица. Рассмотрим отображение , действующее по формуле t(n) = ne. Это отображение является гомоморфизмом колец. Пусть I Z его ядро. Возможны два случая:

  1. I ={0}. В этом случае говорят, что характеристика поля k равна 0. Поскольку тогда при n 0 элементы ne обратимы, t можно продолжить до инъективного отображения T: Q k, положив: T(n/m) = ne* . Значит k содержит подполе Im T .

  2. I{0}. Тогда I = pZ и k содержит Im T в качестве подкольца. В этом случае говорят, что характеристика поля k равна p. Заметим, что число p обязательно простое, так как в противном случае Z/pZ содержит делители нуля.

Итак, если char(k) =0, то k содержит подполе, изоморфное полю рациональных чисел Q, а если char(k) =p, то k содержит подполе, изоморфное конечному полю GF(p).

Примеры.

  1. Поля Q, R, C - очевидно имеют характеристику 0.

К-во Просмотров: 383
Бесплатно скачать Реферат: Линейная Алгебра. Теория групп