Реферат: Математическое моделирование электропривода
, (2)
где - постоянная времени, - декремент затухания колебаний. В случае же длительность процесса в системе (2) равна .
Запишем уравнение (1) в следующем виде
. (3)
Тогда уравнения замкнутой системы будут иметь вид
(4)
Параметры эталонной системы известны. Коэффициент ускорения контура ускорения подлежит определению из условия, чтобы процесс в синтезируемой системе (4) проходил в окрестности решения уравнения (2). Искомое значение можно найти по формуле
,
где находят из (3)
, , .
Отсюда, подставляя значение производных в точке , имеем
(5)
По этому соотношению можно вычислить требуемый коэффициент усиления для заданных значений , если назначена величина .
В Таблица 1 представлены соотношения , соответствующие различным значениям параметра для случая, когда усиление в контуре ускорения принято равным и . В соответствии с (5) величина , при расчетах принималось .
Таблица 1
| 0,2 | 0,4 | 0,6 | 0,8 | 1,0 | 3,0 |
|
| 4,4 | 4,3 | 4,2 | 4,1 | 4,0 | 3,0 | 9 |
3,0 | 2,9 | 2,8 | 2,7 | 2,6 | 1,6 | 6,2 |
Видно что в алгоритме управления с усилением отношение постоянных времени при изменении параметра в пределах . Это свидетельствует о слабой параметрической чувствительности системы (4). Напротив, если принять , то при изменении в указанном диапазоне соотношение между постоянными времени (по управляемой переменной) и (контура ускорения) будет меньше трех. В данном случае процесс будет заметно отличаться от эталонного при .
В Таблица 2 приведены числовые данные, показывающие зависимость перерегулирования от . Эти данные соответствуют переходной характеристике системы для случая . Коэффициент усиления изменялся таким образом, что отношение было равным значением,
Таблица 2
| 1,6 | 2,6 | 3 | 4 |
| 17 | 9 | 4 | 0 |
указанным в верхней строке таблицы. Как следует из приведенных данных, заметное отклонение от переходной характеристики эталонной системы наблюдается при . В случае величина исчезающе мала, но переходный процесс завершается за время , что соответствует эталонной системе (2).
2.Математическое моделирование
Построение уравнения
Синтезируем алгоритм управления по линейной модели. В практике проектирования приводных систем различного назначения часто используются именно такие модели. Это позволит синтезировать структуру и найти приближенные значения параметров алгоритмов управления. Часто оказывается, что найденные таким образом параметры обеспечивают выполнение требований, предъявленных к системе. Итак, решение задачи синтеза алгоритмов управления по линейным моделям представляет практический интерес.
Общепринятые уравнения исполнительного двигателя имеют вид
(6)
где - ток, - индуктивность якорной цепи.
Процессы в электрических цепях двигателя протекают существенно быстрее, чем в механических. Поэтому обычно пренебрегают влиянием цепи с передаточной функцией