Реферат: Математическое моделирование электропривода

В итоге имеем

Из чего получаем .

Это равенство определяет угол поворота вала двигателя, на котором останавливается система. Для нашей задачи очевидно, что вал двигателя повернется на задаваемый нами угол, что подтверждает наш вывод.

Поскольку для любых значений параметров системы, положение равновесия не является устойчивым.

3.построение Имитационной Модели

    1. Построение имитационной модели в Simulink

Реализуем имитацию нашей математической модели. Для чего используем параметры модели как у двигателя постоянного тока с независимым возбуждением типа ДПМ-25:

J=6,2*10-6 Н*м*с2; km=0,023 Н*м*А-1; R=3,8 Ом; L=0,0057 Гн; kw=0,098 в*с*рад-1.

Механическая постоянная времени рассматриваемого объекта управления

Постоянная времени электрической цепи Здесь отношение . Что позволяет не учитывать электрические процессы при синтезе алгоритмов, поскольку они протекают существенно быстрее механических.

Уравнения исследуемой системы:

Законами управления по угловой скорости и угловому положению являются последние два соотношения.

Рассчитаем остальные параметры , и . Примем постоянную времени по угловой скорости Таким образом мы реализуем не наиболее быстрые переходные процессы. В этом случае . Вычислим постоянную времени Теперь можем вычислить Назначим постоянную времени Коэффициент передачи редуктора принят равным

На ниже приведенном рисунке изображена модель электропривода, реализованная в MATLAB с помощью программы Simulink.

Рис 3.1 Имитационная модель в Simulink

Рис 3.2 Зависимость угловой скорости от времени

Рис 3.3 Зависимость угла поворота от времени

На , приведены результаты моделирования осуществлённого с помощью системы изображенной на

В процессе выполнения курсовой работы была также построена математическая модель электропривода по общей методике. Для этого применялись формулы:

Ниже приводится описанная модель

Рис 3.4 Имитационная модель в Simulink, построенная по общей методике

Результаты работы данной модели:


К-во Просмотров: 445
Бесплатно скачать Реферат: Математическое моделирование электропривода