Реферат: Математическое моделирование

Применительно к исследованиям металлургического процесса достаточно использовать кривые низших порядков, например параболу второго порядка.

Эта кривая может иметь один экстремум, что, как показала практика, вполне достаточно для описания различных характеристик металлургического процесса.

Результаты расчетов параметров парной корреляц ионной взаи мосвязи были бы достоверны н представляли бы практическую ценн ость в том случае, если бы и спользуемая информация была получена для условий широких пределов колебаний аргумента при постоянстве всех прочих параметров процесса. Следовательно, методы исследования парной корреляционной взаимосвязи параметров могут быть использованы для решения практических задач лишь тогда, когда существует уверенность в отсутстви и других серьезных влияний на функцию, кроме анализируемого аргумента. В производственных условиях вести процесс таким образом продолжительное время невозможно. Однако если иметь информа цию об основных параметрах процесса, влияющих на его результаты, то математическим путем можно исключить влияние этих параметров и выделить в “чистом виде” взаимосвязь интересующей нас функции и аргумента. Такая связь называется частной, или индивидуальной. Для ее определения используется ме тод множественной регрессии.

МНОЖЕСТВЕННАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ

Множественной регрессией называется взаимосвязь трех и более переменных, или влияние двух и более аргументов на функцию

y = f ( x 1 , x 2 , .... xn ) . ( 19 )

Для простоты рассмотрим случай, когда функция у сопоставляется с двумя аргументами x 1 и x 2 . Такую зависимость графически можно представить в трехмерно м пространстве { у , x 1 , x 2 } Со вокупность всех т точек пред ставляет собой корреляционное пространство. Задача определения связи у отx 1 и x 2 со стоит в том, чтобы подобрать такую плоскость, например плоскость Р , которая наилучшим образом вписалась бы в данное корреляционное пространство:

y = a + b 1 x 1 +b 2 x 2 . ( 20 )

При этом под словами “наилучшим образом” понимается удовлетворение требованию наименьших квадратов, т. е. сумма квадратов расстояний каждой точки корреляционного поля от искомой плоскости [уравнениеy = a + b 1 x 1 + b 2 x 2 ] должна быть минимальной. Это расстояни е определяется выражением

Dyj = yj -(a + b 1 x 1 + b 2 x 2 ) ( 21 )

Требуется найти значения коэффициентовa , b 1 и b 2 .

Выполнив необходимые преобразования, получим систему трех уравнений с тремя неизвестными:

,S y = m a + b 1 S x 1 + b 2 S x 2

S yx 1 = a S x 1 + b 1 S x 1 2 + b 2 S x 1 x 2 .

S yx 2 = a S x 2 + b 1 S x 1 x2 + b 2 S x 2 2 . ( 22 )

Решение системы уравнений относительно коэффициентов a , b 1 и b 2 , позволяет определить их численные значения. ВеличиныS y ,S x 1 , S x 1 2 ,S yx 1 ,S y x 2 , S x 2 , S x 2 2 ,S x 1 x 2 . находятся непосредственно по данным производственных измерений.

Таким образом, найденное уравнение регрессии описывает совместное влияниеx 1 и x 2 на функцию у . Коэффициентыa , b 1 и b 2 при этом имеют математический смысл.

Коэффициента равен функции у при нулевых значениях аргументовx 1 и x 2 . В геометрической интерпретации коэффициент а соответствует ординате точки пересечения плоскости регрессии Р с осью y .

Коэффициентb 1 равен измен ению функции у при изменении первого аргумента х 1 на единицу при неизменном втором аргументе x 2 . Аналогично коэффициент регрессии b 2 равен изменению функцииу при изменении второго аргументаx 2 на единицу при неизменном первом аргументеx 1 .

Из уравнения множественной линейной регрессии могут быть получены уравне ния частной регрессии аргументовx 1 и x 2 на функцию у :

у = a ' 1 + b 1 х 1 ( 23 a )

у = a ' 2 + b 2 х 2 ( 23 b )

При этом угловые коэффициенты регрессииb 1 и b 2 сохраняют те же числовые значения, что и в уравнении множественной регрес сии. Свободные члены уравнений для y можно подсчитать следующим образом:

a ' 1 = а +b 2 X 2 , ( 24 a )

a ' 2 = а +b 1 X 1 , ( 24 b )

где а — свободный член в уравнении множественной регрес сии ;

X 1 , X 2 средние значения соответствующих аргументов.

х \.

Закономерности и выводы, используемые при исследовании взаимосвязи трех переменных (в трехмерном пространстве), применимы и для взаимосвязи большего числа переменных, .т. е. для многомерного пространства типа

y= f ( x 1 , x 2 , .... xn ) ( 25 )

В этом случае расчет уравнения множественной линейной регрессии типа

y = a + b 1 x 1 + b 2 x 2 +. b 3 x 3 + + b n x n ( 26 )

ведется для определения коэффициентовa , b 1 , b 2 ,b n .

Чтобы определить численные значени я этих ве личин, необходимо решить систему уравне ний: аналогичную приведенной выше для двух аргументов и функции.

Определив коэффициенты регрессии решением системы уравнений , получим уравнение множественной линейной регрессии , из которого могут быть получены уравнения частной взаимосвязи функции с каждым аргументом:

у = a' i + b i х i ,(27)

К-во Просмотров: 350
Бесплатно скачать Реферат: Математическое моделирование