Реферат: Материальные уравнения Максвелла для биологических объектов
В работе разработана схема адмитансометра, обеспечивающего высокую точность измерения удельной проводимости электролитов при высокой степени локальности измерений. Разработаны основы строгого электродинамического подхода к этой проблеме. Проведены испытания, из которых видно, что максимальная чувствительность адмитансометра обеспечивается именно в области концентраций тканевых электролитов.
Анотація
В роботі розроблена схема адмітансометра, що забезпечує високу точність виміру питомої провідності електролитів при високому ступені локальності виміру. Розроблені основи строгого електродинамічного підходу до цієї проблеми. Проведено випробування, з яких видно, що максимальна чутливість адмітансометра забезпечується саме в області концентрацій тканинних електролітів.
Содержание:
1. Введение……………………………………………………… 4
2. Основные определения и состояние проблемы………… 10
3. Материальные уравнения Максвелла для биологических объектов………………………………………………………1 8
3.1. Проводящие среды биологических тканей………. . 1 8
3.2. Диэлектрические среды биологических тканей… . 2 2
4. Постановка задачи и её реализация………………………2 5
5. Полученные результаты и их анализ …………………….29
6. Заключение… ………………………………………………..31
7. Список литературы… ……………………………………....32
1. Введение
Диагностика различных заболеваний связана с изучением свойств биологических тканей. Эти свойства изучаются путём воздействия на биологические ткани различными видами излучения и проведением биохимического анализа их состава. В ряду таких ведущих диагностических методов видное место занимает рентгеновская диагностика, ядерный магнитный резонанс, ультразвуковые методы исследования.
В медицинской диагностике широко применяются методы визуализации, связанные с реконструкцией изображения внутренних органов человека. Наибольшее распространение получили рентгеновская компьютерная томография, магниторезонансная томография (МРТ) и радионуклидная эмиссионная томография. Данные способы позволяют получать срезы изображения высокой четкости, однако требуют дорогостоящего оборудования для проведения обследований и имеют обширный перечень медицинских ограничений: существует риск негативного влияния рентгеновского излучения, либо ограничения МРТ, обусловленные сильным магнитным полем, которое не позволяет обследовать пациентов с металлическими имплантатами или установленными электрокардиостимуляторами. Эти методы широко применяются для наблюдения за динамикой процессов в организме при проведении различных диагностических проб и оценке реакций организма на фармакологические препараты. Проведение таких обследований в отдельных случаях требует введения специальных контрастирующих препаратов или радиоактивных изотопов, что также негативно сказывается на безопасности обследования.
В современных условиях весьма актуально создание безопасного для пациента метода диагностики, дополняющего существующие, и позволяющего получать дополнительные данные не только во время лечения или предоперационной подготовки, но и в процессе самой операции.
Измерение импеданса и адмитанса биологических тканей широко используется для диагностики функционального состояния биологических тканей, а также для выявления различных патологий.
Модель с сосредоточенными параметрами является наиболее простой, поскольку в ней открытый конец коаксиала моделируется комплексной ёмкостью
Y = jω ε 0 εc Cf + jω ε 0 εm C 0 ,
где Cf , C 0 - константы, зависящие от конструкции открытого конца коаксиала, причём С f описывает влияние краевого поля внутри зонда, а С0 - влияние краевого поля, связанного с исследуемым веществом, ε0 - диэлектрическая проницаемость свободного пространства, ε c - относительная диэлектрическая проницаемость материала, заполняющего коаксиальную линию, ε m - диэлектрическая проницаемость исследуемого образца. Данная модель имеет существенные ограничения. С увеличением частоты точность модели резко ухудшается, так как она не учитывает эффекты излучения и наличие высших мод в апертуре зонда, которые при больших значениях ε m и ω могут существенно повлиять на результаты измерения. В работе [1] эффекты излучения предлагается моделировать включением члена, имеющего размерность проводимости и пропорциональногo :
Y = jω ε 0 εc Cf + jω ε 0 εm C 0 + G (ε0 ε m )2,5
Относительно более точная нелинейная модель приведена в работе [2]
Y = K 1 + K 2 εm + K 4 + K 4
Где К i - комплексные, в общем случае, коэффициенты модели, зависящие от частоты, и параметров коаксиальной линии. Для их определения необходимы калибровочные измерения в четырёх средах с точно известными диэлектрическими свойствами.
Все эти модели основаны на квазистатическом анализе и, следовательно, справедливы для электрически малых апертур и ограниченного диапазона частот.
В работах [3, 4] была предложена также модель виртуальной линии, не нашедшая, впрочем, широкого распространения. Она состоит в моделировании тестируемой среды виртуальной линией передачи длиной L и материалом заполнения ε m с теми же размерами, что и реальной коаксиальной линии. На конце виртуальная линия считается разомкнутой, т.е. адмитанс нагрузки линии полагается равным нулю. Модель дает уравнение, связывающее искомую диэлектрическую проницаемость ε m с измеренным входным коэффициентом отражения Rin на заданной частоте f [3].
Гдe βc - постоянная распространения в коаксиальной линии зондa;
L - длина виртуальной линии
--> ЧИТАТЬ ПОЛНОСТЬЮ <--