Реферат: Matlab
Для h=0.01 выполним строку 1, затем строку 4 и получим S=0.7204, а для h=0.005 найдем S=0.7152. При интегрировании всегда естественно делать такие проверки.
Выясним, какой объем заключен между поверхностью f(x,y) и областью G, где f(x,y)>=0. Для этого снова возьмем в строке 1 h=0.02 и вычислим
5; V = h ^2* sum ( f ( f >=0)) (V=0.1268)
Для h=0.01 V=0.1235, а для h=0.005 V=0.1219. Теперь не нужно писать f(:), поскольку f(f>=0) есть вектор.
Конечно, эти результаты приближенные (с точностью до 1 - 2%), но отметьте, как быстро и просто они были получены. Такие приемы можно применять для решения достаточно широкого круга задач.
Выполним строку
6; C = contour ( x , x , f ); clabel ( C )
которая зашлет числовую информацию о графике в матрицу C и построит график, выбрав значения уровней автоматически. Из матрицы C можно последовательно выбирать все кривые.
Обобщения. Графическим способом можно решать системы уравнений и уравнения в комплексной плоскости. Команда contour3 строит линии уровней для функций f(x,y,z), при этом сетки по аргументам всегда должны быть прямоугольными.
5. Полиномы
По степени применимости, по разнообразию и качеству соответствующих команд скалярные полиномы – следующие за матрицами математические объекты в MATLAB'е. Полином
p(x)=an xn +an-1 xn-1 +...+a0 задается вектором-строкой p из чисел an , an-1 , ... , a0 ,
т.е. коэффициентами, расположенными в порядке убывания показателя степени. Его степень n задавать не надо, поскольку n=length(p)-1; полином может быть и константой – тогда n=0; коэффициенты ak – любые комплексные числа. Вектор p интерпретируется системой как полином только тогда, когда он задается в качестве параметра для одной из команд, производящих вычисления с полиномами. Так как в этих командах не проверяется условие an ¹0, надо стараться самим соблюдать его, поскольку иногда это может служить источником ошибок.
Основные команды для действий с полиномами таковы:
conv(p,q) – произведение полиномов p и q. Название команды происходит от слова convolution (свертка), поскольку коэффициенты произведения действительно получаются как компоненты свертки векторов p и q.
[q,r]=deconv(b,a) – частное (q) и остаток (r) от деления b на a, так что conv(a,q)+r=b.
residue(b,a) – разложение рациональной функции b(x)/a(x) на элементарные дроби над полем комплексных чисел с выделением целой части. Если a(x) имеет кратные или близкие друг к другу корни, результаты могут быть неверными, поскольку такая задача плохо обусловлена. Плохая обусловленность, т.е. крайне сильная зависимость результата от коэффициентов, иллюстрируется заключительным примером из этой темы.
p=poly(r) – построение полинома по корням, заданным в векторе-столбце r. Для квадратной матрицы r полином p будет ее характеристическим многочленом.
polyval(p,x) – поэлементное вычисление значений полинома p на множестве x, где x может быть как вектором, так и матрицей. Размеры результата совпадают с size(x).
polyder(p) – производная от p.
roots(p) - вектор-столбец, содержащий все корни полинома. Их порядок не определен. Сказанное по поводу неустойчивости результатов для команды residue точно так же относится и к команде roots. Корни полинома вычисляются как собственные значения некоторой матрицы A(p) того же порядка.
Приведем несколько примеров по применению этих команд.
1. Построим график полинома p(x)=x3 -x+2 на отрезке -1<=x<=1. Это выглядит так:
p =[1,0,-1,2]; x =-1:.01:1; f = polyval ( p , x ); plot ( x , f ), grid
Полином не имеет корней на заданном отрезке. Это подтверждает и команда
roots ( p )'
которая даст
ans = -1.5214 0.7607 - 0.8579i0.7607 + 0.8579i.
2.Разделим предыдущий полином на x-3: