Реферат: Механические колебания в дифференциальных уравнениях

Колебаниями называются процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качания маятника часов, переменный электрический ток и т.д. При колебательном движении маятника изменяется координата центра масс, в случае переменного тока колеблются напряжение и сила тока. Физическая природа колебаний может быть разной, однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями. Рассмотрим механические колебания.

Гармонические колебания.

Гармоническими колебаниями называются колебания, при которых изменяющаяся величина изменяется по закону синуса (косинуса).

Пусть груз весом Р подвешен на вертикальной пружине, длина которой в естественном состоянии равна . Груз слегка оттянут книзу и затем отпущен. Найдем закон движения груза, пренебрегая массой пружины и сопротивлением воздуха.

Решение

Направим ось Ох вниз по вертикальной прямой, проходящей через точку подвеса груза. Начало координат О выберем в положении равновесии груз, то есть в точке, в которой вес груза уравновешивается силой натяжения пружины.

Пусть l означает удлинение пружины в данный момент, а lст —статическое удлинение, т.е. расстояние от конца нерастянутой пружины до положения равновесия. Тогда l=lст +х, или l-lст =х.

Дифференциальное уравнение получим из второго закона Ньютона: F=ma, где m=P/g—масса груза а—ускорение движения и F—равнодей-ствующая приложенных к грузу сил. В данном случае равнодействующая слагается из силы натяжения пружины и силы тяжести.

По закону Гука сила натяжения пружины пропорциональна её удлинению: Fупр =-сl, где с – постоянный коэффициент пропорциональности называемый жесткостью пружины.

Так как в положении равновесия сила равновесия сила натяжения пружины уравновешивается весом тела, то P= сlст . Подставим в дифференциальное уравнение выражение Р и заменим l-lст через х, получится уравнение в виде:

или, обозначив с/m через k2 ,

(1)

Полученное уравнение определяет так называемые свободные колебания груза. Оно называется уравнением гармонического осциллятора. Это линейное дифференциальное уравнение второго порядка с постоянными коэффициентами. Его характеристическое уравнение:

имеет мнимые корни , соответственно этому общее решение

Для выяснения физического смысла решения удобнее привести его к другой форме, введя новые произвольные постоянные. Умножив и разделив на , получим:

Если положить

то

(2)

График гармонических колебаний имеет вид:

Таким образом, груз совершает гармонические колебания около положения равновесия.

Величину А называют амплитудой колебания, а аргумент — фазой колебания. Значение фазы при t=o т.e. величина , называется начальной фазой колебания. Величина есть частота колебания. Период колебания и частота k зависят только от жесткости пружины и от массы системы. Так как с = Р/lст = mg/lст , то для периода можно получить также формулу:

Скорость движения груза получается дифференцированием решения по t:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 1013
Бесплатно скачать Реферат: Механические колебания в дифференциальных уравнениях