Реферат: Механизмы и несущие конструкции радиоэлектронных средств

Механизмы входят в состав любого радиоэлектронного комплекса, являясь частью силовых приводов, устройств регистрации и воспроизведения информации, периферийного оборудования ЭВМ, автоматических манипуляторов и т.п., а несущие конструкции (каркасы и корпуса функциональных узлов, блоков и приборов) служат для размещения на них электрорадиоэлементов и соединительных проводников, т.е. самого радиоэлектронного средства. Поэтому изучение современных методов проектирования, производства и эксплуатации механизмов и несущих конструкций необходимо каждому инженеру, специализирующемуся в области проектировния РЭС.

"Механика РЭС" - первая часть дисциплины "Механизмы и несущие конструкции РЭС" обеспечивает подготовку будущего инженера соответствующей специальности в области теоретических разделов механики, на которых базируются прикладные методы создания механизмов и несущих конструкций, их деталей и узлов, и содержит:

1. Основы теории механизмов.

2. Основы расчетов деталей механизмов на прочность, жесткость и устойчивость.

3. Элементы теории точности механизмов и основы взаимозаменяемости.

В первом разделе излагаются методы анализа и синтеза механизмов - устройств для передачи механической энергии движения и преобразования его параметров, характеристики процессов движения, в том числе колебательных. Особое внимание уделяется проектированию механизмов рациональной структуры, обеспечивающих требуемые значения кинематических и динамических параметров при минимальных потерях энергии и максимальной долговечности, т.е. наиболее полно соответствующих своему целевому назначению.

Во втором разделе рассматривается поведение элементов механизма, нагруженных внешними и внутренними усилиями - напряженное и деформированное состояния материала деталей и методы обеспечения их прочности и надежности. Используя методы этого раздела, можно выбирать свойства материалов, необходимых для изготовления деталей, добиваться рациональной формы последних, определять напряжения и деформации, возникающие при работе механизмов и несущих конструкций, т.е. в конечном счете обеспечить необходимый уровень надежности технического устройства при проектировании и эксплуатации.

Третий раздел посвящен методам обеспечения функциональной взаимозаменяемости механизмов РЭС по параметрам кинематической точности, которые в значительной степени определяют функциональную пригодность всего РЭС. Рассмотрены теоретические и экспериментальные методы определения показателей кинематической точности и способы достижения их заданных значений при проектировании и изготовлении механизмов.

В развитие механики и методов проектирования механических конструкций и механизмов значительный вклад внесли русские и советские ученые: П. Л. Чебышев, Н. Е. Жуковский, Л. В. Ассур, С. П. Тимошенко, И. И. Артоболевский, Н. И. Колчин, В. А. Гавриленко, В. И. Феодосьев, Г. С. Писаренко, Н. Г. Бруевич, Л. И. Якушев, Б. А. Тайц, Л. Н. Решетов, Ф. В. Дроздов, В. В. Кулагин, С. О. Доброгурский, О. Ф. Тищенко и многие другие. Развитие этих методов продолжается и в настоящее время, в особенности с появлением новых возможностей создания оптимальных конструкций благодаря применению систем автоматизированного проектирования, использующих ЭВМ.

Особенность современного этапа развития механических устройств РЭС - увеличение интенсивности нагрузок вследствие миниатюризации аппаратуры, замена вычислительных механизмов электронными устройствами, использование механизмов с особыми кинематическими характеристиками (периферийное оборудование ЭВМ, лентопротяжные и сканирующие механизмы систем регистрации и воспроизведения информации), широкое применение автоматизированного проектирования.

Вопросы, рассматриваемые в настоящем учебном пособии, подробно изложены в следующей учебной и справочной литературе:

РАЗДЕЛ 1. ОСНОВЫ ТЕОРИИ МЕХАНИЗМОВ

Глава 2. СТРУКТУРНЫЙ АНАЛИЗ МЕХАНИЗМОВ

2.1. Основные понятия и определения.

Механизм, или передаточный механизм - это устройство для передачи механической энергии движения с преобразованием ее параметров от источника (двигателя, датчика, человека-оператора) к потребителю - устройству, для функционирования которого необходима энергия в виде механического перемещения.

Теория механизмов - наука, изучающая методы анализа и синтеза механизмов. Методам анализа посвящены три раздела:

а) структурный анализ;

б) кинематический анализ;

в) динамический анализ.

Синтез механизма проводится с использованием результатов анализа механизмов известной структуры.

2.2. Структурный анализ механизмов.

2.2.1. Задачи структурного анализа:

а) определение структуры - состава механизма;

б) классификация подвижных соединений звеньев - кинематических пар;

в) определение степени подвижности механизма.

Причины, вызывающие движение звеньев, не рассматриваются.

2.2.2. Структура механизма (М). М состоит из отдельных частейзвеньев, соединенных друг с другом подвижно с помощью кинематических пар. Все неподвижные детали М считают одним звеном - стойкой. Среди подвижных звеньев различают ведущие - положения или перемещения их в каждый момент времени задают с помощью обобщенных координат, ведомые, положения и перемещения которых однозначно зависят от положений или перемещений ведуших.

Кинематическая пара (КП) - соединение двух звеньев, обеспечивающее их определенное относительное перемещение. Звенья, объединенные КП в связанную систему, образуют кинематическую цепь.

Механизм - это замкнутая кинематическая цепь, обладающая определенностью перемещений звеньев, т.е. при задании перемещения ведущего звена (или звеньев) все остальные - ведомые - получают вполне определенные перемещения.

2.2.3. Кинематическая классификация КП. По характеру относительных перемещений звеньев все пары делят на 5 классов; класс пары определяется числом условий связи, наложенных на относительное перемещение звеньев: s = 6 - w, где 6 - число независимых перемещений свободного звена, w - число относительных независимых перемещений звеньев в паре. Примеры КП различных классов показаны на рис. 2.1, а их условные изображения на схемах - на рис. 2.2. Высшие КП (с точечным или линейным контактом звеньев) изображены на рис. 2.3. В винтовой паре 5-го класса линейное перемещение вдоль оси винта и вращательное вокруг нее связаны и образуют одно перемещение по винтовой линии.

2.2.4. Определение степени подвижности М по структурным формулам. Степень подвижености М - число независимых перемещений, которые нужно сообщить его ведущим звеньям, чтобы перемещения ведомых были однозначно определены.

Структурная формула М - уравнение, отражающее структуру и позволяющее определить степень подвижности:

w = 6k - sum[i* (p)i]1, 5 + qs, (2.1)

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 1040
Бесплатно скачать Реферат: Механизмы и несущие конструкции радиоэлектронных средств