Реферат: Механизмы и несущие конструкции радиоэлектронных средств

(x)c = (1/S) *int (x*ds) S; (y) c = (1/S) *int (y*ds) S . (5.5)

5.3.4. Инерционные параметры звеньев: масса при поступательном движении и моменты инерции при вращательном - меры инерционности звеньев. Моменты инерции определяют относительно соответствующей координатной оси: Jx, Jy, Jz, или относительно какой-либо точки - Ja ; в последнем случае Ja = Jxa + Jya + Jza . Момент инерции относительно оси, проходящей через центр масс, называют главным моментом инерции.

Для тела обьемом V с равномерно распределенной массой момент инерции

J = int (ro**2*dm) V, (5.6)

где ro - радиус вращения элементарной массы dm.

Моменты инерции некоторых тел относительно осей, проходящих через центры масс:

- шара массой m и радиусом R:

Jc = 0.4*m*R**2 ;

- цилиндра массой m и радиусом R, относительно оси, прохо дящей через центр масс и параллельной образующей:

Jc = 0.5*m*R**2 ;

- тонкого стержня длиной L и массой m, относительно оси, проходящей через центр масс и перпендикулярной продольной оси стержня:

Jc = (m*L**2) /12 .

Момент инерции относительно оси, удаленной от центра масс на расстояние a (рис. 5.4) :

Ja = Jc + ma**2 .

5.3.5. Инерционные усилия. Возникают при действии ускорений, пропорциональны этим ускорениям и массе звена или моменту инерции.

Сила инерции: Fи = -m* (w)c, условно приложена в центре масс и пропорциональна его ускорению (w) c.

Момент инерционной силы: Tи = -Jc* (eps) c, где (eps) c - угловое ускорение, Jc - момент инерции относительно центра масс.

В сложном движении, представляющем сумму поступательного и вращательного, на тело действует инерционная сила Fи и момент инерционной силы Ти (рис. 5.5) .

5.3.6. Реакции в кинематических парах. Взаимно уравновешенные усилия взаимодействия звеньев в подвижных соединениях. Реакцию можно представить как сумму нормальной (R) n и касательной (R) t (рис. 5.6) .

Касательная - сила трения, сопротивление тангенциальному смещению поверхностей - функция нормальной силы.

5.4. Краткая характеристика сил трения.

5.4.1. Трение имеет двойственную молекулярно - механическую природу, зависит как от взаимодействия молекулярных структур поверхностных слоев, так и от их механического сцепления. Силы трения зависят от четырех групп факторов:

а) вида трения - скольжения или качения;

б) свойств поверхностных слоев контактирующих деталей;

в) режима трения;

г) формы поверхностей кинематической пары.

5.4.2. Виды трения. Трение скольжения-процесс, при котором одни и те же зоны первой контактирующей поверхности приходят в соприкосновение с новыми зонами другой (рис. 5.7) .

Углы при трении: gamma - угол давления; fit - угол трения. Коэффициент трения f = tg (fit) .

Fт = (R) t = (R) n*tg (fit) = f* (R)n . (5.7)

В трущейся паре может возникнуть самоторможение, когда движение под действием внешней силы P невозможно, как бы велика она ни была, т.к. при этом P < Fт ; условие самоторможения можно записать в виде: gamma < < fit .

К-во Просмотров: 1046
Бесплатно скачать Реферат: Механизмы и несущие конструкции радиоэлектронных средств